Menu Close

y-log-2-x-5-4-find-dy-dx-




Question Number 137667 by aurpeyz last updated on 05/Apr/21
y=log_2 (x^5 +4) find (dy/dx)
$${y}={log}_{\mathrm{2}} \left({x}^{\mathrm{5}} +\mathrm{4}\right)\:{find}\:\frac{{dy}}{{dx}} \\ $$
Answered by Dwaipayan Shikari last updated on 05/Apr/21
y=((log(x^5 +4))/(log(2)))⇒(dy/dx)=(1/(log(2))).((5x^4 )/(x^5 +4))
$${y}=\frac{{log}\left({x}^{\mathrm{5}} +\mathrm{4}\right)}{{log}\left(\mathrm{2}\right)}\Rightarrow\frac{{dy}}{{dx}}=\frac{\mathrm{1}}{{log}\left(\mathrm{2}\right)}.\frac{\mathrm{5}{x}^{\mathrm{4}} }{{x}^{\mathrm{5}} +\mathrm{4}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *