Menu Close

y-t-C-v-t-y-t-1-v-t-t-Here-t-is-the-variable-y-t-is-the-function-y-t-is-its-first-derivative-v-t-is-an-another-function-in-the-same-variable-t-C-is-a-constant-Find-an-




Question Number 6415 by sanusihammed last updated on 26/Jun/16
y^′ (t) = C + ((v(t)y(t))/(1 + v(t)t))    Here, t  is the variable   y(t) is the function  y^′ (t) is its first derivative   v(t) is an another function in the same variable  t   C  is a constant.    Find an arbitrary solution  (1)  you can either find any pair of   t  and  y(t)  as a solution to  this  (2) you can take any value for the function   v(t)  (2a)  v(t)  can be a constant function  (2b)  v(t)  can be a negative increasingly varying function.
y(t)=C+v(t)y(t)1+v(t)tHere,tisthevariabley(t)isthefunctiony(t)isitsfirstderivativev(t)isananotherfunctioninthesamevariabletCisaconstant.Findanarbitrarysolution(1)youcaneitherfindanypairoftandy(t)asasolutiontothis(2)youcantakeanyvalueforthefunctionv(t)(2a)v(t)canbeaconstantfunction(2b)v(t)canbeanegativeincreasinglyvaryingfunction.
Answered by Chaeris27 last updated on 26/Jun/16
You should first put y(t) and y′(t) on the same side  y′(t) = C + ((v(t)y(t))/(1+v(t)t))  y(t)(D−I((v(t))/(1+v(t)t))) = C  Let u(t) = ((v(t))/(1+v(t)t)), then we have  y′(t)−u(t)y(t) = C  We can find a particular solution for C=0  y′(t) = u(t)y(t)  ((y′(t))/(y(t))) = u(t)  (d/dt) ln(y(t)) = u(t)  ln(y(t)) = ∫u(t)dt  y(t) = e^(∫u(t)dt)   substituting u(t) back we have  y(t) = e^(∫((v(t))/(1+v(t)t))dt)   To end just add C back to get general soljtion
Youshouldfirstputy(t)andy(t)onthesamesidey(t)=C+v(t)y(t)1+v(t)ty(t)(DIv(t)1+v(t)t)=CLetu(t)=v(t)1+v(t)t,thenwehavey(t)u(t)y(t)=CWecanfindaparticularsolutionforC=0y(t)=u(t)y(t)y(t)y(t)=u(t)ddtln(y(t))=u(t)ln(y(t))=u(t)dty(t)=eu(t)dtsubstitutingu(t)backwehavey(t)=ev(t)1+v(t)tdtToendjustaddCbacktogetgeneralsoljtion
Commented by sanusihammed last updated on 26/Jun/16
Thanks so much
Thankssomuch
Commented by Chaeris27 last updated on 26/Jun/16
I have checked and my solution is  correct but adding C back is hard :    Firstly, the general solution for C=0  is :  y(t) = c_1 ∙e^(∫((v(t))/(1+v(t)t))dt)   It appears that if you try to cancel out  the variable part of the equation to get  to  simpler problem you have  e^(−∫((v(t))/(1+v(t)t))dt)  y(t) = c_1   e^(−∫((v(t))/(1+v(t)t))dt) y′(t) = ((v(t))/(1+v(t)t))c_1   so if you multiply the original equation  by e^(−∫((v(t))/(1+v(t)t))dt)  you get  e^(−∫((v(t))/(1+v(t)t))dt) y′(t) − e^(−∫((v(t))/(1+v(t)t))dt) ((v(t))/(1+v(t)t))y(t) = Ce^(−∫((v(t))/(1+v(t)t))dt)   Or with u(t) = ((v(t))/(1+v(t)t))  e^(−∫u(t)dt) y′(t) + (−u(t)e^(−∫u(t)dt)  y(t)) = e^(−∫u(t)dt) C  Let U(t) = e^(−∫u(t)dt)  then U′(t) = −u(t)e^(−∫u(t)dt)   which we can substitute in our equation  U(t)y′(t)+U′(t)y(t) = (d/dt)(U(t)y(t))  (d/dt)(U(t)y(t)) = e^(−∫u(t)dt) C  U(t)y(t) = ∫e^(−∫u(t)dt) C dt + c_1   = C∙∫e^(−∫u(t)dt)  dt + c_1   (c_1  comes from the fact that we have  just integrated, it can be any number)  Finally divide by U(t) to get   y(t) = (1/(U(t)))(C∙∫e^(−∫u(t)dt)  dt + c_1 )  Substitute u(t) and U(t) (note that  (1/(U(t))) = (1/e^(−∫u(t)dt) ) = e^(∫u(t)dt)  )    y(t) = e^(∫((v(t))/(1+v(t)t))dt) ∙(C∙∫e^(−∫((v(t))/(1+v(t)t))dt)  dt + c_1 )  So you have right here the most  general solution available
IhavecheckedandmysolutioniscorrectbutaddingCbackishard:Firstly,thegeneralsolutionforC=0is:y(t)=c1ev(t)1+v(t)tdtItappearsthatifyoutrytocanceloutthevariablepartoftheequationtogettosimplerproblemyouhaveev(t)1+v(t)tdty(t)=c1ev(t)1+v(t)tdty(t)=v(t)1+v(t)tc1soifyoumultiplytheoriginalequationbyev(t)1+v(t)tdtyougetev(t)1+v(t)tdty(t)ev(t)1+v(t)tdtv(t)1+v(t)ty(t)=Cev(t)1+v(t)tdtOrwithu(t)=v(t)1+v(t)teu(t)dty(t)+(u(t)eu(t)dty(t))=eu(t)dtCLetU(t)=eu(t)dtthenU(t)=u(t)eu(t)dtwhichwecansubstituteinourequationU(t)y(t)+U(t)y(t)=ddt(U(t)y(t))ddt(U(t)y(t))=eu(t)dtCU(t)y(t)=eu(t)dtCdt+c1=Ceu(t)dtdt+c1(c1comesfromthefactthatwehavejustintegrated,itcanbeanynumber)FinallydividebyU(t)togety(t)=1U(t)(Ceu(t)dtdt+c1)Substituteu(t)andU(t)(notethat1U(t)=1eu(t)dt=eu(t)dt)y(t)=ev(t)1+v(t)tdt(Cev(t)1+v(t)tdtdt+c1)Soyouhaverightherethemostgeneralsolutionavailable
Commented by sanusihammed last updated on 26/Jun/16
Great. i really appreciate.
Great.ireallyappreciate.

Leave a Reply

Your email address will not be published. Required fields are marked *