Question Number 6415 by sanusihammed last updated on 26/Jun/16
$${y}^{'} \left({t}\right)\:=\:{C}\:+\:\frac{{v}\left({t}\right){y}\left({t}\right)}{\mathrm{1}\:+\:{v}\left({t}\right){t}} \\ $$$$ \\ $$$${Here},\:{t}\:\:{is}\:{the}\:{variable}\: \\ $$$${y}\left({t}\right)\:{is}\:{the}\:{function} \\ $$$${y}^{'} \left({t}\right)\:{is}\:{its}\:{first}\:{derivative}\: \\ $$$${v}\left({t}\right)\:{is}\:{an}\:{another}\:{function}\:{in}\:{the}\:{same}\:{variable}\:\:{t}\: \\ $$$${C}\:\:{is}\:{a}\:{constant}. \\ $$$$ \\ $$$${Find}\:{an}\:{arbitrary}\:{solution} \\ $$$$\left(\mathrm{1}\right)\:\:{you}\:{can}\:{either}\:{find}\:{any}\:{pair}\:{of}\:\:\:{t}\:\:{and}\:\:{y}\left({t}\right)\:\:{as}\:{a}\:{solution}\:{to} \\ $$$${this} \\ $$$$\left(\mathrm{2}\right)\:{you}\:{can}\:{take}\:{any}\:{value}\:{for}\:{the}\:{function}\:\:\:{v}\left({t}\right) \\ $$$$\left(\mathrm{2}{a}\right)\:\:{v}\left({t}\right)\:\:{can}\:{be}\:{a}\:{constant}\:{function} \\ $$$$\left(\mathrm{2}{b}\right)\:\:{v}\left({t}\right)\:\:{can}\:{be}\:{a}\:{negative}\:{increasingly}\:{varying}\:{function}. \\ $$
Answered by Chaeris27 last updated on 26/Jun/16
$${You}\:{should}\:{first}\:{put}\:{y}\left({t}\right)\:{and}\:{y}'\left({t}\right)\:{on}\:{the}\:{same}\:{side} \\ $$$${y}'\left({t}\right)\:=\:{C}\:+\:\frac{{v}\left({t}\right){y}\left({t}\right)}{\mathrm{1}+{v}\left({t}\right){t}} \\ $$$${y}\left({t}\right)\left({D}−{I}\frac{{v}\left({t}\right)}{\mathrm{1}+{v}\left({t}\right){t}}\right)\:=\:{C} \\ $$$${Let}\:{u}\left({t}\right)\:=\:\frac{{v}\left({t}\right)}{\mathrm{1}+{v}\left({t}\right){t}},\:{then}\:{we}\:{have} \\ $$$${y}'\left({t}\right)−{u}\left({t}\right){y}\left({t}\right)\:=\:{C} \\ $$$${We}\:{can}\:{find}\:{a}\:{particular}\:{solution}\:{for}\:{C}=\mathrm{0} \\ $$$${y}'\left({t}\right)\:=\:{u}\left({t}\right){y}\left({t}\right) \\ $$$$\frac{{y}'\left({t}\right)}{{y}\left({t}\right)}\:=\:{u}\left({t}\right) \\ $$$$\frac{{d}}{{dt}}\:{ln}\left({y}\left({t}\right)\right)\:=\:{u}\left({t}\right) \\ $$$${ln}\left({y}\left({t}\right)\right)\:=\:\int{u}\left({t}\right){dt} \\ $$$${y}\left({t}\right)\:=\:{e}^{\int{u}\left({t}\right){dt}} \\ $$$${substituting}\:{u}\left({t}\right)\:{back}\:{we}\:{have} \\ $$$${y}\left({t}\right)\:=\:{e}^{\int\frac{{v}\left({t}\right)}{\mathrm{1}+{v}\left({t}\right){t}}{dt}} \\ $$$${To}\:{end}\:{just}\:{add}\:{C}\:{back}\:{to}\:{get}\:{general}\:{soljtion} \\ $$
Commented by sanusihammed last updated on 26/Jun/16
$${Thanks}\:{so}\:{much} \\ $$
Commented by Chaeris27 last updated on 26/Jun/16
$${I}\:{have}\:{checked}\:{and}\:{my}\:{solution}\:{is} \\ $$$${correct}\:{but}\:{adding}\:{C}\:{back}\:{is}\:{hard}\:: \\ $$$$ \\ $$$${Firstly},\:{the}\:{general}\:{solution}\:{for}\:{C}=\mathrm{0} \\ $$$${is}\:: \\ $$$${y}\left({t}\right)\:=\:{c}_{\mathrm{1}} \centerdot{e}^{\int\frac{{v}\left({t}\right)}{\mathrm{1}+{v}\left({t}\right){t}}{dt}} \\ $$$${It}\:{appears}\:{that}\:{if}\:{you}\:{try}\:{to}\:{cancel}\:{out} \\ $$$${the}\:{variable}\:{part}\:{of}\:{the}\:{equation}\:{to}\:{get} \\ $$$${to}\:\:{simpler}\:{problem}\:{you}\:{have} \\ $$$${e}^{−\int\frac{{v}\left({t}\right)}{\mathrm{1}+{v}\left({t}\right){t}}{dt}} \:{y}\left({t}\right)\:=\:{c}_{\mathrm{1}} \\ $$$${e}^{−\int\frac{{v}\left({t}\right)}{\mathrm{1}+{v}\left({t}\right){t}}{dt}} {y}'\left({t}\right)\:=\:\frac{{v}\left({t}\right)}{\mathrm{1}+{v}\left({t}\right){t}}{c}_{\mathrm{1}} \\ $$$${so}\:{if}\:{you}\:{multiply}\:{the}\:{original}\:{equation} \\ $$$${by}\:{e}^{−\int\frac{{v}\left({t}\right)}{\mathrm{1}+{v}\left({t}\right){t}}{dt}} \:{you}\:{get} \\ $$$${e}^{−\int\frac{{v}\left({t}\right)}{\mathrm{1}+{v}\left({t}\right){t}}{dt}} {y}'\left({t}\right)\:−\:{e}^{−\int\frac{{v}\left({t}\right)}{\mathrm{1}+{v}\left({t}\right){t}}{dt}} \frac{{v}\left({t}\right)}{\mathrm{1}+{v}\left({t}\right){t}}{y}\left({t}\right)\:=\:{Ce}^{−\int\frac{{v}\left({t}\right)}{\mathrm{1}+{v}\left({t}\right){t}}{dt}} \\ $$$${Or}\:{with}\:{u}\left({t}\right)\:=\:\frac{{v}\left({t}\right)}{\mathrm{1}+{v}\left({t}\right){t}} \\ $$$${e}^{−\int{u}\left({t}\right){dt}} {y}'\left({t}\right)\:+\:\left(−{u}\left({t}\right){e}^{−\int{u}\left({t}\right){dt}} \:{y}\left({t}\right)\right)\:=\:{e}^{−\int{u}\left({t}\right){dt}} {C} \\ $$$${Let}\:{U}\left({t}\right)\:=\:{e}^{−\int{u}\left({t}\right){dt}} \:{then}\:{U}'\left({t}\right)\:=\:−{u}\left({t}\right){e}^{−\int{u}\left({t}\right){dt}} \\ $$$${which}\:{we}\:{can}\:{substitute}\:{in}\:{our}\:{equation} \\ $$$${U}\left({t}\right){y}'\left({t}\right)+{U}'\left({t}\right){y}\left({t}\right)\:=\:\frac{{d}}{{dt}}\left({U}\left({t}\right){y}\left({t}\right)\right) \\ $$$$\frac{{d}}{{dt}}\left({U}\left({t}\right){y}\left({t}\right)\right)\:=\:{e}^{−\int{u}\left({t}\right){dt}} {C} \\ $$$${U}\left({t}\right){y}\left({t}\right)\:=\:\int{e}^{−\int{u}\left({t}\right){dt}} {C}\:{dt}\:+\:{c}_{\mathrm{1}} \\ $$$$=\:{C}\centerdot\int{e}^{−\int{u}\left({t}\right){dt}} \:{dt}\:+\:{c}_{\mathrm{1}} \\ $$$$\left({c}_{\mathrm{1}} \:{comes}\:{from}\:{the}\:{fact}\:{that}\:{we}\:{have}\right. \\ $$$$\left.{just}\:{integrated},\:{it}\:{can}\:{be}\:{any}\:{number}\right) \\ $$$${Finally}\:{divide}\:{by}\:{U}\left({t}\right)\:{to}\:{get}\: \\ $$$${y}\left({t}\right)\:=\:\frac{\mathrm{1}}{{U}\left({t}\right)}\left({C}\centerdot\int{e}^{−\int{u}\left({t}\right){dt}} \:{dt}\:+\:{c}_{\mathrm{1}} \right) \\ $$$${Substitute}\:{u}\left({t}\right)\:{and}\:{U}\left({t}\right)\:\left({note}\:{that}\right. \\ $$$$\left.\frac{\mathrm{1}}{{U}\left({t}\right)}\:=\:\frac{\mathrm{1}}{{e}^{−\int{u}\left({t}\right){dt}} }\:=\:{e}^{\int{u}\left({t}\right){dt}} \:\right) \\ $$$$ \\ $$$${y}\left({t}\right)\:=\:{e}^{\int\frac{{v}\left({t}\right)}{\mathrm{1}+{v}\left({t}\right){t}}{dt}} \centerdot\left({C}\centerdot\int{e}^{−\int\frac{{v}\left({t}\right)}{\mathrm{1}+{v}\left({t}\right){t}}{dt}} \:{dt}\:+\:{c}_{\mathrm{1}} \right) \\ $$$${So}\:{you}\:{have}\:{right}\:{here}\:{the}\:{most} \\ $$$${general}\:{solution}\:{available} \\ $$
Commented by sanusihammed last updated on 26/Jun/16
$${Great}.\:{i}\:{really}\:{appreciate}. \\ $$