Menu Close

y-x-i-x-R-i-2-1-is-y-C-




Question Number 4555 by FilupSmith last updated on 07/Feb/16
y=x^i   x∈R  i^2 =−1    is y∈C?
y=xixRi2=1isyC?
Commented by Yozzii last updated on 07/Feb/16
All known numbers are members of  C since C=R∪{wholly complex numbers}.  C is unbounded and open.
AllknownnumbersaremembersofCsinceC=R{whollycomplexnumbers}.Cisunboundedandopen.
Commented by FilupSmith last updated on 07/Feb/16
Then, more spesifically, is y∈R?
Then,morespesifically,isyR?
Commented by Yozzii last updated on 07/Feb/16
y could be real or complex.  x∈R  If x>0, x=e^(lnx) ⇒x^i =e^(ilnx) =y  x^i =cos(lnx)+isin(lnx)  If y=x^i ∈R⇒sin(lnx)=0  ⇒lnx=nπ⇒x=e^(nπ)  (n∈Z).  If y=x^i ∈{wholly complex}⇒cos(lnx)=0  ∴lnx=2nπ±0.5π⇒x=e^(2nπ±0.5)  (n∈Z).  For x>0, x≠e^(nπ)  and x≠e^(2nπ±0.5) , y∈C.     If x<0 let x=−a, a>0  (a∈R)  ⇒x=−a=a(cosπ+isinπ)=ae^(πi)   x=e^(ln(ae^(iπ) )) =e^(lna+iπ)   ⇒x^i =e^(ilna+i^2 π) =e^(ilna−π) =e^(−π) (cos(lna)+isin(lna))  So, similarly for x<0, y∈R or y∈C.    I don′t think y is defined for x=0.
ycouldberealorcomplex.xRIfx>0,x=elnxxi=eilnx=yxi=cos(lnx)+isin(lnx)Ify=xiRsin(lnx)=0lnx=nπx=enπ(nZ).Ify=xi{whollycomplex}cos(lnx)=0lnx=2nπ±0.5πx=e2nπ±0.5(nZ).Forx>0,xenπandxe2nπ±0.5,yC.Ifx<0letx=a,a>0(aR)x=a=a(cosπ+isinπ)=aeπix=eln(aeiπ)=elna+iπxi=eilna+i2π=eilnaπ=eπ(cos(lna)+isin(lna))So,similarlyforx<0,yRoryC.Idontthinkyisdefinedforx=0.
Commented by Yozzii last updated on 07/Feb/16
Let′s consider the general form   y=(a+bi)^(c+id)  where i^2 =−1,  a,b,c,d∈R, and if a=b, then a≠0 for  if a=b=0, y is undefined since arg(0)  is undefined.     In modulus−polar form,                   a+bi=re^(iθ)   where r=(√(a^2 +b^2 )) ,r>0, and θ , −π<θ≤π, is the   principal argument of the complex number  a+bi. e is Euler′s constant.  ∴ y=(re^(iθ) )^(c+id ) =r^(c+id) e^(iθ(c+id))   y=r^c (r^d )^i e^(ciθ−θd) =r^c e^(−θd) (r^d e^(cθ) )^i =nx^i   where n=r^c e^(−θd) >0, x=r^d e^(cθ) >0,  n,x∈R.  y=n(e^(lnx) )^i =ne^(ilnx) =n(cos(lnx)+isin(lnx))  y=ncos(lnx)+insin(lnx)  From this we know that ∣y∣=n=r^c e^(−θd)   and arg(y)=lnx=ln(r^d e^(cθ) )=cθ+dlnr.    (1) If y is real⇒nsin(lnx)=0  ⇒lnx=tπ⇒x=e^(tπ) , t∈Z.   ∴ y=ncos(lnx)=r^c e^(−θd) cos(lne^(tπ) )  y=(a^2 +b^2 )^(c/2) e^(−dθ) costπ  y=(−1)^t e^(−dθ) (a^2 +b^2 )^(c/2) ,t∈Z.  {Since x=r^d e^(cθ)  and x=e^(tπ) ⇒e^(tπ) =r^d e^(cθ)   ∴tπ=dlnr+cθ  t=((dlnr+cθ)/π)∈Z  Is it necessary for t∈Z that r=1?}    (2)If y is wholly complex⇒ ncos(lnx)=0  ⇒lnx=2tπ±0.5π⇒x=e^(2tπ±0.5π) ,t∈Z  ∴ y=nisin(2tπ±0.5π)  y=ni(sin2tπcos0.5π±sin0.5πcos2tπ)  y=±ni=±r^c e^(−θd) i  x=r^d e^(cθ)  ∴ r^d e^(cθ) =e^(2tπ±0.5π)   dlnr+cθ=2tπ±0.5π  t=((dlnr+cθ±0.5π)/(2π))∈Z  (3)For r^d e^(cθ) ≠e^((2t±0.5)π) ,e^(qπ)  where  t,q∈Z, Im(y)≠0 and Re(y)≠0 and has the form   y=r^c e^(−dθ) (cos(cθ+dlnr)+isin(cθ+dlnr))  Re(y)=(a^2 +b^2 )^(c/2) e^(−dθ) cos(cθ+(1/2)dln(a^2 +b^2 ))  Im(y)=(a^2 +b^2 )^(c/2) e^(−dθ) sin(cθ+(1/2)dln(a^2 +b^2 ))
Letsconsiderthegeneralformy=(a+bi)c+idwherei2=1,a,b,c,dR,andifa=b,thena0forifa=b=0,yisundefinedsincearg(0)isundefined.Inmoduluspolarform,a+bi=reiθwherer=a2+b2,r>0,andθ,π<θπ,istheprincipalargumentofthecomplexnumbera+bi.eisEulersconstant.y=(reiθ)c+id=rc+ideiθ(c+id)y=rc(rd)ieciθθd=rceθd(rdecθ)i=nxiwheren=rceθd>0,x=rdecθ>0,n,xR.y=n(elnx)i=neilnx=n(cos(lnx)+isin(lnx))y=ncos(lnx)+insin(lnx)Fromthisweknowthaty∣=n=rceθdandarg(y)=lnx=ln(rdecθ)=cθ+dlnr.(1)Ifyisrealnsin(lnx)=0lnx=tπx=etπ,tZ.y=ncos(lnx)=rceθdcos(lnetπ)y=(a2+b2)c2edθcostπy=(1)tedθ(a2+b2)c/2,tZ.{Sincex=rdecθandx=etπetπ=rdecθtπ=dlnr+cθt=dlnr+cθπZIsitnecessaryfortZthatr=1?}(2)Ifyiswhollycomplexncos(lnx)=0lnx=2tπ±0.5πx=e2tπ±0.5π,tZy=nisin(2tπ±0.5π)y=ni(sin2tπcos0.5π±sin0.5πcos2tπ)y=±ni=±rceθdix=rdecθrdecθ=e2tπ±0.5πdlnr+cθ=2tπ±0.5πt=dlnr+cθ±0.5π2πZ(3)Forrdecθe(2t±0.5)π,eqπwheret,qZ,Im(y)0andRe(y)0andhastheformy=rcedθ(cos(cθ+dlnr)+isin(cθ+dlnr))Re(y)=(a2+b2)c2edθcos(cθ+12dln(a2+b2))Im(y)=(a2+b2)c2edθsin(cθ+12dln(a2+b2))
Commented by FilupSmith last updated on 07/Feb/16
Wow! This is amazing and very interesting!  I love it!
Wow!Thisisamazingandveryinteresting!Iloveit!

Leave a Reply

Your email address will not be published. Required fields are marked *