Menu Close

Z-0-pi-2-arctan-sin-x-dx-0-pi-4-arcsin-tan-x-dx-




Question Number 135174 by bemath last updated on 11/Mar/21
Z = ∫_0 ^( π/2) arctan (sin x) dx + ∫_0 ^( π/4) arcsin (tan x) dx
Z=0π/2arctan(sinx)dx+0π/4arcsin(tanx)dx
Answered by john_santu last updated on 11/Mar/21
let Z_1 =∫_0 ^( π/2) arctan (sin x)dx   settng sin x = q ⇒Z_1 =∫_0 ^( 1)  ((arctan (q))/( (√(1−q^2 )))) dq  Z_1 = (arctan (q).arcsin (q)]_0 ^1 −∫_0 ^( 1)  ((arcsin q)/(1+q^2 )) dq  Z_1 = (π^2 /8)−∫_0 ^( 1)  ((arcsin q)/(1+q^2 )) dq  let Z_2 =∫_0 ^( π/4)  arcsin (tan x)dx  setting tan x = q   Z_2 = ∫_0 ^( 1)  ((arcsin (q))/(1+q^2 )) dq   Now we get Z = Z_1 +Z_2   Z= (π^2 /8) −∫_0 ^( 1)  ((arcsin (q))/(1+q^2 )) dq + ∫_0 ^( 1)  ((arcsin (q))/(1+q^2 )) dq  Z = (π^2 /8) •
letZ1=0π/2arctan(sinx)dxsettngsinx=qZ1=01arctan(q)1q2dqZ1=(arctan(q).arcsin(q)]0101arcsinq1+q2dqZ1=π2801arcsinq1+q2dqletZ2=0π/4arcsin(tanx)dxsettingtanx=qZ2=01arcsin(q)1+q2dqNowwegetZ=Z1+Z2Z=π2801arcsin(q)1+q2dq+01arcsin(q)1+q2dqZ=π28

Leave a Reply

Your email address will not be published. Required fields are marked *