Z-0-pi-2-arctan-sin-x-dx-0-pi-4-arcsin-tan-x-dx- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 135174 by bemath last updated on 11/Mar/21 Z=∫0π/2arctan(sinx)dx+∫0π/4arcsin(tanx)dx Answered by john_santu last updated on 11/Mar/21 letZ1=∫0π/2arctan(sinx)dxsettngsinx=q⇒Z1=∫01arctan(q)1−q2dqZ1=(arctan(q).arcsin(q)]01−∫01arcsinq1+q2dqZ1=π28−∫01arcsinq1+q2dqletZ2=∫0π/4arcsin(tanx)dxsettingtanx=qZ2=∫01arcsin(q)1+q2dqNowwegetZ=Z1+Z2Z=π28−∫01arcsin(q)1+q2dq+∫01arcsin(q)1+q2dqZ=π28∙ Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: now-try-this-one-dx-x-1-2-x-1-3-x-1-6-Next Next post: x-2-9-3x-5-x-3-x-1-x-3-x-1-Find-solution- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.