Menu Close

z-0-t-i-1-x-dx-0-t-ie-ipix-dx-1-i-0-t-e-ipix-dx-i-1-ipi-e-ipit-1-z-1-pi-1-t-1-2-0-t-ie-ipix-dx-u-e-ipix-du-1-ipi-e-ipix-dx-0-t-ipi-i




Question Number 7021 by FilupSmith last updated on 06/Aug/16
z=∫_0 ^( t) i(−1)^x dx  =∫_0 ^( t) ie^(iπx) dx    (1)  =i∫_0 ^( t) e^(iπx) dx  =i((1/(iπ))(e^(iπt) −1))  z=(1/π)((−1)^t −1)    (2)  =∫_0 ^( t) ie^(iπx) dx  u=e^(iπx)  ⇒ du=(1/(iπ))e^(iπx) dx  =∫_0 ^( t) ((iπ)/(iπ))ie^(iπx) dx  =∫_0 ^( t) iπidu  =−π∫_0 ^( t) du  =−π(e^(iπt) −1)    which is incorrect?
z=0ti(1)xdx=0tieiπxdx(1)=i0teiπxdx=i(1iπ(eiπt1))z=1π((1)t1)(2)=0tieiπxdxu=eiπxdu=1iπeiπxdx=0tiπiπieiπxdx=0tiπidu=π0tdu=π(eiπt1)whichisincorrect?
Commented by FilupSmith last updated on 07/Aug/16
Ah, i see my mistake, thank you!
Ah,iseemymistake,thankyou!
Commented by Yozzii last updated on 06/Aug/16
In (2), for u=e^(iπx) ⇒du=iπe^(iπx) dx  ⇒u=e^(πit)  at x=t and u=1 at x=0.  ⇒∫_0 ^t ie^(πix) dx=i×(1/(iπ))∫_1 ^e^(iπt)  du=(1/π)(e^(πit) −1)=(1/π)((−1)^t −1)
In(2),foru=eiπxdu=iπeiπxdxu=eπitatx=tandu=1atx=0.0tieπixdx=i×1iπ1eiπtdu=1π(eπit1)=1π((1)t1)
Answered by Yozzii last updated on 08/Aug/16
Check for a response in the comments.
Checkforaresponseinthecomments.

Leave a Reply

Your email address will not be published. Required fields are marked *