Menu Close

0-1-0-1-dxdy-1-xy-4-




Question Number 189549 by mnjuly1970 last updated on 18/Mar/23
   ∫_0 ^( 1) ∫_0 ^( 1) ((dxdy)/((1+xy )^( 4) ))=?
$$ \\ $$$$\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{dxdy}}{\left(\mathrm{1}+{xy}\:\right)^{\:\mathrm{4}} }=? \\ $$
Answered by witcher3 last updated on 18/Mar/23
∫_0 ^1 −(1/(3y))∫_0 ^1 ((−3y)/((1+xy)^4 ))dx  =∫_0 ^1 −(1/(3y))((1/((1+y)^3 ))−1)dy  =∫_0 ^1 ((y^2 +3y+3)/((1+y)^3 ))dy=∫_0 ^1 (((y+1)^2 +y+1+1)/((y+1)^3 ))dy  =ln(2)+(1/2)−(1/2).((3/4))  =ln(2)+(1/8)
$$\int_{\mathrm{0}} ^{\mathrm{1}} −\frac{\mathrm{1}}{\mathrm{3y}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{−\mathrm{3y}}{\left(\mathrm{1}+\mathrm{xy}\right)^{\mathrm{4}} }\mathrm{dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} −\frac{\mathrm{1}}{\mathrm{3y}}\left(\frac{\mathrm{1}}{\left(\mathrm{1}+\mathrm{y}\right)^{\mathrm{3}} }−\mathrm{1}\right)\mathrm{dy} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{y}^{\mathrm{2}} +\mathrm{3y}+\mathrm{3}}{\left(\mathrm{1}+\mathrm{y}\right)^{\mathrm{3}} }\mathrm{dy}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\left(\mathrm{y}+\mathrm{1}\right)^{\mathrm{2}} +\mathrm{y}+\mathrm{1}+\mathrm{1}}{\left(\mathrm{y}+\mathrm{1}\right)^{\mathrm{3}} }\mathrm{dy} \\ $$$$=\mathrm{ln}\left(\mathrm{2}\right)+\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}.\left(\frac{\mathrm{3}}{\mathrm{4}}\right) \\ $$$$=\mathrm{ln}\left(\mathrm{2}\right)+\frac{\mathrm{1}}{\mathrm{8}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *