Menu Close

0-1-0-1-e-2x-y-dydx-




Question Number 100362 by Dara last updated on 26/Jun/20
∫_0 ^1 ∫_0 ^1 e^(2x+y) dydx
$$\int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} {e}^{\mathrm{2}{x}+{y}} {dydx} \\ $$
Answered by smridha last updated on 26/Jun/20
∫_0 ^1 dx.[e^(2x+y) ]_0 ^1   =∫_0 ^1 [e^(2x+1) −e^(2x) ]dx  =(e−1)[(e^(2x) /2)]_(0 ) ^1   =(1/2)(e−1)(e^2 −1)=(1/2)(e^3 −e^2 −e+1)
$$\int_{\mathrm{0}} ^{\mathrm{1}} \boldsymbol{{dx}}.\left[\boldsymbol{{e}}^{\mathrm{2}\boldsymbol{{x}}+\boldsymbol{{y}}} \right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \left[\boldsymbol{{e}}^{\mathrm{2}\boldsymbol{{x}}+\mathrm{1}} −\boldsymbol{{e}}^{\mathrm{2}\boldsymbol{{x}}} \right]\boldsymbol{{dx}} \\ $$$$=\left(\boldsymbol{{e}}−\mathrm{1}\right)\left[\frac{\boldsymbol{{e}}^{\mathrm{2}\boldsymbol{{x}}} }{\mathrm{2}}\right]_{\mathrm{0}\:} ^{\mathrm{1}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left(\boldsymbol{{e}}−\mathrm{1}\right)\left(\boldsymbol{{e}}^{\mathrm{2}} −\mathrm{1}\right)=\frac{\mathrm{1}}{\mathrm{2}}\left(\boldsymbol{{e}}^{\mathrm{3}} −\boldsymbol{{e}}^{\mathrm{2}} −\boldsymbol{{e}}+\mathrm{1}\right) \\ $$
Answered by Ar Brandon last updated on 26/Jun/20
I=∫_0 ^1 ∫_0 ^1 e^(2x+y) dxdy=[∫_0 ^1 e^(2x) dx][∫_0 ^1 e^y dy]=[(e^(2x) /2)]_0 ^1 ∙[(e^y /1)]_0 ^1   ⇒I=(((e^2 −1)/2))(((e−1)/1))=(1/2)(e+1)(e−1)^2
$$\mathcal{I}=\int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{e}^{\mathrm{2x}+\mathrm{y}} \mathrm{dxdy}=\left[\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{e}^{\mathrm{2x}} \mathrm{dx}\right]\left[\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{e}^{\mathrm{y}} \mathrm{dy}\right]=\left[\frac{\mathrm{e}^{\mathrm{2x}} }{\mathrm{2}}\right]_{\mathrm{0}} ^{\mathrm{1}} \centerdot\left[\frac{\mathrm{e}^{\mathrm{y}} }{\mathrm{1}}\right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$\Rightarrow\mathcal{I}=\left(\frac{\mathrm{e}^{\mathrm{2}} −\mathrm{1}}{\mathrm{2}}\right)\left(\frac{\mathrm{e}−\mathrm{1}}{\mathrm{1}}\right)=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{e}+\mathrm{1}\right)\left(\mathrm{e}−\mathrm{1}\right)^{\mathrm{2}} \\ $$
Answered by mathmax by abdo last updated on 26/Jun/20
I =∫_0 ^1  ∫_0 ^1  e^(2x+y)  dy dx ⇒ I =∫_0 ^1  e^(2x)  dx.∫_0 ^1  e^y  dy  =[(1/2)e^(2x) ]_0 ^1 .[e^y ]_0 ^1  =(1/2)(e^2 −1)(e−1) =(1/2)(e^3 −e^2 −e+1)
$$\mathrm{I}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\int_{\mathrm{0}} ^{\mathrm{1}} \:\mathrm{e}^{\mathrm{2x}+\mathrm{y}} \:\mathrm{dy}\:\mathrm{dx}\:\Rightarrow\:\mathrm{I}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\mathrm{e}^{\mathrm{2x}} \:\mathrm{dx}.\int_{\mathrm{0}} ^{\mathrm{1}} \:\mathrm{e}^{\mathrm{y}} \:\mathrm{dy} \\ $$$$=\left[\frac{\mathrm{1}}{\mathrm{2}}\mathrm{e}^{\mathrm{2x}} \right]_{\mathrm{0}} ^{\mathrm{1}} .\left[\mathrm{e}^{\mathrm{y}} \right]_{\mathrm{0}} ^{\mathrm{1}} \:=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{e}^{\mathrm{2}} −\mathrm{1}\right)\left(\mathrm{e}−\mathrm{1}\right)\:=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{e}^{\mathrm{3}} −\mathrm{e}^{\mathrm{2}} −\mathrm{e}+\mathrm{1}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *