Question Number 96514 by Farruxjano last updated on 02/Jun/20
![∫_0 ^1 (1/(1+[(1/x)]))dx=?](https://www.tinkutara.com/question/Q96514.png)
Commented by Farruxjano last updated on 02/Jun/20
![I don′t know english perfect, but i can say [x]−the whole part of x. x=[x]+{x}](https://www.tinkutara.com/question/Q96517.png)
Commented by prakash jain last updated on 02/Jun/20
![[(1/x)]=⌊(1/x)⌋ floor function?](https://www.tinkutara.com/question/Q96516.png)
Commented by prakash jain last updated on 02/Jun/20
![∫_0 ^1 (1/(1+⌊(1/x)⌋))= x∈((1/2),1] ⇒⌊(1/x)⌋=1 area=(1/(1+⌊(1/x)⌋))×(1−(1/2)) x∈((1/3),(1/2)] ⇒⌊(1/x)⌋=2 area=(1/3)×((1/2)−(1/3)) x∈((1/(n+1)),(1/n)]⇒⌊(1/x)⌋=n area=(1/(n+1))×((1/n)−(1/(n+1)))=(1/(n+1)) =(1/(n(n+1)^2 )) I=Σ_(n=1) ^∞ (1/(n(n+1)^2 ))=2−(π^2 /6)](https://www.tinkutara.com/question/Q96518.png)
Answered by abdomathmax last updated on 02/Jun/20
![I =∫_0 ^1 (dx/(1+[(1/x)])) changement (1/x)=t give I =−∫_1 ^(+∞) (1/(1+[t]))(−(dt/t^2 )) =∫_1 ^(+∞) (dt/(t^2 (1+[t]))) =Σ_(n=1) ^∞ ∫_n ^(n+1) (1/(n+1))×(dt/t^2 ) =Σ_(n=1) ^∞ (1/(n+1))[−(1/t)]_n ^(n+1) =Σ_(n=1) ^∞ (1/(n+1))((1/n)−(1/(n+1))) =Σ_(n=1) ^∞ (1/(n(n+1)))−Σ_(n=1) ^∞ (1/((n+1)^2 )) Σ_(n=1) ^∞ (1/(n(n+1))) =lim_(n→+∞) Σ_(k=1) ^n ((1/(k(k+1)))) =lim_(n→+∞) Σ_(k=1) ^n ((1/k)−(1/(k+1))) =lim_(n→+∞) (1−(1/(n+1)))=1 Σ_(n=1) ^∞ (1/((n+1)^2 )) =Σ_(n=2) ^∞ (1/n^2 ) =(π^2 /6)−1 ⇒ I =1−((π^2 /6)−1) =2−(π^2 /6)](https://www.tinkutara.com/question/Q96519.png)