Menu Close

0-1-1-1-1-x-dx-




Question Number 96514 by Farruxjano last updated on 02/Jun/20
∫_0 ^1 (1/(1+[(1/x)]))dx=?
1011+[1x]dx=?
Commented by Farruxjano last updated on 02/Jun/20
I don′t know english perfect, but i can say  [x]−the whole part of x.   x=[x]+{x}
Idontknowenglishperfect,buticansay[x]thewholepartofx.x=[x]+{x}
Commented by prakash jain last updated on 02/Jun/20
[(1/x)]=⌊(1/x)⌋ floor function?
[1x]=1xfloorfunction?
Commented by prakash jain last updated on 02/Jun/20
∫_0 ^1 (1/(1+⌊(1/x)⌋))=  x∈((1/2),1] ⇒⌊(1/x)⌋=1  area=(1/(1+⌊(1/x)⌋))×(1−(1/2))  x∈((1/3),(1/2)] ⇒⌊(1/x)⌋=2  area=(1/3)×((1/2)−(1/3))  x∈((1/(n+1)),(1/n)]⇒⌊(1/x)⌋=n        area=(1/(n+1))×((1/n)−(1/(n+1)))=(1/(n+1))        =(1/(n(n+1)^2 ))  I=Σ_(n=1) ^∞  (1/(n(n+1)^2 ))=2−(π^2 /6)
0111+1x=x(12,1]1x=1area=11+1x×(112)x(13,12]1x=2area=13×(1213)x(1n+1,1n]1x=narea=1n+1×(1n1n+1)=1n+1=1n(n+1)2I=n=11n(n+1)2=2π26
Answered by abdomathmax last updated on 02/Jun/20
I =∫_0 ^1  (dx/(1+[(1/x)])) changement (1/x)=t give  I =−∫_1 ^(+∞)  (1/(1+[t]))(−(dt/t^2 )) =∫_1 ^(+∞)  (dt/(t^2 (1+[t])))  =Σ_(n=1) ^∞  ∫_n ^(n+1)  (1/(n+1))×(dt/t^2 ) =Σ_(n=1) ^∞  (1/(n+1))[−(1/t)]_n ^(n+1)   =Σ_(n=1) ^∞  (1/(n+1))((1/n)−(1/(n+1)))  =Σ_(n=1) ^∞  (1/(n(n+1)))−Σ_(n=1) ^∞  (1/((n+1)^2 ))  Σ_(n=1) ^∞  (1/(n(n+1))) =lim_(n→+∞)  Σ_(k=1) ^n ((1/(k(k+1))))  =lim_(n→+∞)  Σ_(k=1) ^n ((1/k)−(1/(k+1)))  =lim_(n→+∞) (1−(1/(n+1)))=1  Σ_(n=1) ^∞  (1/((n+1)^2 )) =Σ_(n=2) ^∞  (1/n^2 ) =(π^2 /6)−1 ⇒  I =1−((π^2 /6)−1) =2−(π^2 /6)
I=01dx1+[1x]changement1x=tgiveI=1+11+[t](dtt2)=1+dtt2(1+[t])=n=1nn+11n+1×dtt2=n=11n+1[1t]nn+1=n=11n+1(1n1n+1)=n=11n(n+1)n=11(n+1)2n=11n(n+1)=limn+k=1n(1k(k+1))=limn+k=1n(1k1k+1)=limn+(11n+1)=1n=11(n+1)2=n=21n2=π261I=1(π261)=2π26

Leave a Reply

Your email address will not be published. Required fields are marked *