Question Number 186263 by mokys last updated on 02/Feb/23
$$\int_{\mathrm{0}} ^{\:\mathrm{1}} \sqrt{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{4}{x}}}\:{dx} \\ $$$$ \\ $$
Answered by cortano1 last updated on 03/Feb/23
$$\:{let}\:\frac{\mathrm{1}}{\mathrm{2}\sqrt{{x}}}\:=\:\mathrm{tan}\:{t}\:\Rightarrow\mathrm{2}\sqrt{{x}}\:=\:\mathrm{cot}\:{t} \\ $$$$\Rightarrow\mathrm{4}{x}\:=\:\mathrm{cot}\:^{\mathrm{2}} {t}\: \\ $$$$\Rightarrow\mathrm{4}{dx}\:=\:\mathrm{2cot}\:{t}\:\left(−\mathrm{csc}^{\mathrm{2}} \:{t}\right)\:{dt} \\ $$$${I}=\int\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+\mathrm{tan}\:^{\mathrm{2}} {t}}}\:\left(−\mathrm{2cot}\:{t}\:\mathrm{csc}^{\mathrm{2}} {t}\right){dt} \\ $$$${I}=\:−\mathrm{2}\int\:\mathrm{cos}\:{t}\:\frac{\mathrm{cos}\:{t}}{\mathrm{sin}\:{t}}\:.\:\frac{\mathrm{1}}{\mathrm{sin}\:^{\mathrm{2}} {t}}\:{dt}\: \\ $$$${I}=−\mathrm{2}\int\:\frac{\mathrm{1}−\mathrm{sin}\:^{\mathrm{2}} {t}}{\mathrm{sin}\:^{\mathrm{3}} {t}}\:{dt} \\ $$$${I}=−\mathrm{2}\int\left(\mathrm{csc}^{\mathrm{3}} {t}−\mathrm{csc}\:{t}\right)\:{dt}\: \\ $$$$ \\ $$
Answered by Mathspace last updated on 03/Feb/23
$${let}\:\frac{\mathrm{1}}{\mathrm{4}{x}}={t}\:\Rightarrow{x}=\frac{\mathrm{1}}{\mathrm{4}{t}}\:\Rightarrow \\ $$$${I}=−\int_{\frac{\mathrm{1}}{\mathrm{4}}} ^{+\infty} \sqrt{\mathrm{1}+{t}}\left(\frac{−{dt}}{\mathrm{4}{t}^{\mathrm{2}} }\right) \\ $$$$\mathrm{4}{I}=\int_{\frac{\mathrm{1}}{\mathrm{4}}} ^{+\infty} \frac{\sqrt{\mathrm{1}+{t}}}{{t}^{\mathrm{2}} }{dt}\:\:\:\left(\mathrm{1}+{t}={z}^{\mathrm{2}} \right) \\ $$$$=\int_{\frac{\sqrt{\mathrm{5}}}{\mathrm{2}}} ^{\infty} \frac{{z}}{\left({z}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} }\left(\mathrm{2}{z}\right){dz} \\ $$$$=\int_{\frac{\sqrt{\mathrm{5}}}{\mathrm{2}}} \:\:{z}\left(\frac{\mathrm{2}{z}}{\left({z}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} }\right){dz}\:\:\left({by}\:{parts}\right) \\ $$$$=\left[−\frac{{z}}{{z}^{\mathrm{2}} −\mathrm{1}}\right]_{\frac{\sqrt{\mathrm{5}}}{\mathrm{2}}} ^{\infty} −\int_{\frac{\sqrt{\mathrm{5}}}{\mathrm{2}}} ^{\infty} \left(−\frac{\mathrm{1}}{{z}^{\mathrm{2}} −\mathrm{1}}\right){dz} \\ $$$$=\frac{\sqrt{\mathrm{5}}}{\mathrm{2}\left(\frac{\mathrm{5}}{\mathrm{4}}−\mathrm{1}\right)}+\frac{\mathrm{1}}{\mathrm{2}}\int_{\frac{\sqrt{\mathrm{5}}}{\mathrm{2}}} ^{\infty} \left(\frac{\mathrm{1}}{{z}−\mathrm{1}}−\frac{\mathrm{1}}{{z}+\mathrm{1}}\right){dz} \\ $$$$=\mathrm{2}\sqrt{\mathrm{5}}\:+\frac{\mathrm{1}}{\mathrm{2}}\left[{ln}\mid\frac{{z}−\mathrm{1}}{{z}+\mathrm{1}}\mid\right]_{\frac{\sqrt{\mathrm{5}}}{\mathrm{2}}} ^{\infty} \\ $$$$=\mathrm{2}\sqrt{\mathrm{5}}−\frac{\mathrm{1}}{\mathrm{2}}{ln}\mid\frac{\frac{\sqrt{\mathrm{5}}}{\mathrm{2}}−\mathrm{1}}{\frac{\sqrt{\mathrm{5}}}{\mathrm{2}}+\mathrm{1}}\mid \\ $$$$=\mathrm{2}\sqrt{\mathrm{5}}−\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\frac{\sqrt{\mathrm{5}}−\mathrm{2}}{\:\sqrt{\mathrm{5}}+\mathrm{2}}\right) \\ $$