0-1-1-1-4x-dx- Tinku Tara June 4, 2023 None 0 Comments FacebookTweetPin Question Number 186263 by mokys last updated on 02/Feb/23 ∫011+14xdx Answered by cortano1 last updated on 03/Feb/23 let12x=tant⇒2x=cott⇒4x=cot2t⇒4dx=2cott(−csc2t)dtI=∫11+tan2t(−2cottcsc2t)dtI=−2∫costcostsint.1sin2tdtI=−2∫1−sin2tsin3tdtI=−2∫(csc3t−csct)dt Answered by Mathspace last updated on 03/Feb/23 let14x=t⇒x=14t⇒I=−∫14+∞1+t(−dt4t2)4I=∫14+∞1+tt2dt(1+t=z2)=∫52∞z(z2−1)2(2z)dz=∫52z(2z(z2−1)2)dz(byparts)=[−zz2−1]52∞−∫52∞(−1z2−1)dz=52(54−1)+12∫52∞(1z−1−1z+1)dz=25+12[ln∣z−1z+1∣]52∞=25−12ln∣52−152+1∣=25−12ln(5−25+2) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Prove-that-R-m-n-C-m-n-m-Next Next post: Question-55190 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.