Menu Close

0-1-1-1-4x-dx-




Question Number 186263 by mokys last updated on 02/Feb/23
∫_0 ^( 1) (√(1+(1/(4x)))) dx
011+14xdx
Answered by cortano1 last updated on 03/Feb/23
 let (1/(2(√x))) = tan t ⇒2(√x) = cot t  ⇒4x = cot^2 t   ⇒4dx = 2cot t (−csc^2  t) dt  I=∫ (1/( (√(1+tan^2 t)))) (−2cot t csc^2 t)dt  I= −2∫ cos t ((cos t)/(sin t)) . (1/(sin^2 t)) dt   I=−2∫ ((1−sin^2 t)/(sin^3 t)) dt  I=−2∫(csc^3 t−csc t) dt
let12x=tant2x=cott4x=cot2t4dx=2cott(csc2t)dtI=11+tan2t(2cottcsc2t)dtI=2costcostsint.1sin2tdtI=21sin2tsin3tdtI=2(csc3tcsct)dt
Answered by Mathspace last updated on 03/Feb/23
let (1/(4x))=t ⇒x=(1/(4t)) ⇒  I=−∫_(1/4) ^(+∞) (√(1+t))(((−dt)/(4t^2 )))  4I=∫_(1/4) ^(+∞) ((√(1+t))/t^2 )dt   (1+t=z^2 )  =∫_((√5)/2) ^∞ (z/((z^2 −1)^2 ))(2z)dz  =∫_((√5)/2)   z(((2z)/((z^2 −1)^2 )))dz  (by parts)  =[−(z/(z^2 −1))]_((√5)/2) ^∞ −∫_((√5)/2) ^∞ (−(1/(z^2 −1)))dz  =((√5)/(2((5/4)−1)))+(1/2)∫_((√5)/2) ^∞ ((1/(z−1))−(1/(z+1)))dz  =2(√5) +(1/2)[ln∣((z−1)/(z+1))∣]_((√5)/2) ^∞   =2(√5)−(1/2)ln∣((((√5)/2)−1)/(((√5)/2)+1))∣  =2(√5)−(1/2)ln((((√5)−2)/( (√5)+2)))
let14x=tx=14tI=14+1+t(dt4t2)4I=14+1+tt2dt(1+t=z2)=52z(z21)2(2z)dz=52z(2z(z21)2)dz(byparts)=[zz21]5252(1z21)dz=52(541)+1252(1z11z+1)dz=25+12[lnz1z+1]52=2512ln52152+1=2512ln(525+2)

Leave a Reply

Your email address will not be published. Required fields are marked *