0-1-1-1-x-1-x-dx-is-fractional-part-is-floor-function- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 95650 by M±th+et+s last updated on 26/May/20 ∫01{(−1)⌊1x⌋1x}dx{..}isfractionalpart⌊..⌋isfloorfunction Answered by mathmax by abdo last updated on 26/May/20 A=∫01{(−1)[1x]×1x}dxwedothechangement1x=t⇒A=−∫1+∞{(−1)[t]×t}(−dtt2)(u=[u]+{u})=∫1+∞((−1)[t]t−[(−1)[t]t])dtt2=∫1+∞(−1)[t]tdt−∫1+∞[(−1)[t]t]t2dt=E−FE=∑n=1∞∫nn+1(−1)ntdt=∑n=1∞(−1)n(ln(n+1)−ln(n))=∑n=1∞(−1)nln(1+1n)(serieisconvergentdueto(−1)nln(1+1n)∼(−1)nn)∫1+∞[(−1)[t]t]t2dt=∑n=1∞∫nn+1[(−1)nt]t2dt=∑k=1∞∫2k2k+1[t]t2dt+∑k=0∞∫2k+12k+2[−t]t2dtwehave∑k=1∞∫2k2k+1[t]t2dt=∑k=1∞∫2k2k+12kt2dt=∑k=1∞(2k)[−1t]2k2k+1=2∑k=1∞k(12k−12k+1)=2∑k=1∞(12−k2k+1)=…2k+1<t<2k+2⇒−2k−2<−t<−2k−1⇒[−t]=−2k−2⇒∑k=0∞∫2k+12k+2[−t]t2dt=∑k=0∞−∫2k+12k+22k+2t2dt=−∑k=0∞(2k+2)[−1t]2k+12k+2=∑k=0∞(2k+2)(12k+2−12k+1)=∑k=0∞(1−2k+22k+1)….itsseemsthatthisintegralisdivefgent…! Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-161186Next Next post: arc-length-3x-3-2-1-from-x-0-and-x-1-help-please-sir- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.