Menu Close

0-1-1-1-x-1-x-dx-is-fractional-part-is-floor-function-




Question Number 95650 by  M±th+et+s last updated on 26/May/20
∫_0 ^1 {(−1)^(⌊(1/x)⌋) (1/x)}dx  {..}is fractional part  ⌊..⌋ is floor function
01{(1)1x1x}dx{..}isfractionalpart..isfloorfunction
Answered by mathmax by abdo last updated on 26/May/20
A =∫_0 ^1 {(−1)^([(1/x)]) ×(1/x)}dx  we do the changement (1/x)=t ⇒  A =−∫_1 ^(+∞) {(−1)^([t]) ×t}(−(dt/t^2 ))   ( u=[u]+{u})  =∫_1 ^(+∞) ( (−1)^([t]) t−[(−1)^([t]) t])(dt/t^2 )  =∫_1 ^(+∞) (((−1)^([t]) )/t)dt −∫_1 ^(+∞)  (([(−1)^([t]) t])/t^2 )dt =E−F  E =Σ_(n=1) ^∞  ∫_n ^(n+1)  (((−1)^n )/t)dt =Σ_(n=1) ^∞  (−1)^n (ln(n+1)−ln(n))  =Σ_(n=1) ^∞ (−1)^n ln(1+(1/n))  (serie is convergent  due to  (−1)^n ln(1+(1/n))∼(((−1)^n )/n))  ∫_1 ^(+∞)  (([(−1)^([t]) t])/t^2 )dt =Σ_(n=1) ^∞  ∫_n ^(n+1) (([(−1)^n  t])/t^2 )dt  =Σ_(k=1) ^∞  ∫_(2k) ^(2k+1)   (([t])/t^2 )dt +Σ_(k=0) ^∞  ∫_(2k+1) ^(2k+2)  (([−t])/t^2 )dt  we have Σ_(k=1) ^∞  ∫_(2k) ^(2k+1)  (([t])/t^2 )dt =Σ_(k=1) ^∞  ∫_(2k) ^(2k+1) ((2k)/t^2 )dt  =Σ_(k=1) ^∞  (2k)[−(1/t)]_(2k) ^(2k+1)  =2Σ_(k=1) ^∞ k((1/(2k))−(1/(2k+1)))  =2Σ_(k=1) ^∞ ((1/2)−(k/(2k+1)))=...  2k+1<t<2k+2 ⇒−2k−2<−t<−2k−1 ⇒  [−t] =−2k−2 ⇒Σ_(k=0) ^∞  ∫_(2k+1) ^(2k+2)  (([−t])/t^2 )dt  =Σ_(k=0) ^∞  −∫_(2k+1) ^(2k+2)    ((2k+2)/t^2 )dt  =−Σ_(k=0) ^∞  (2k+2)[−(1/t)]_(2k+1) ^(2k+2)  =Σ_(k=0) ^∞ (2k+2)((1/(2k+2))−(1/(2k+1)))  =Σ_(k=0) ^∞ (1−((2k+2)/(2k+1)))  ....its seems that this integral is  divefgent...!
A=01{(1)[1x]×1x}dxwedothechangement1x=tA=1+{(1)[t]×t}(dtt2)(u=[u]+{u})=1+((1)[t]t[(1)[t]t])dtt2=1+(1)[t]tdt1+[(1)[t]t]t2dt=EFE=n=1nn+1(1)ntdt=n=1(1)n(ln(n+1)ln(n))=n=1(1)nln(1+1n)(serieisconvergentdueto(1)nln(1+1n)(1)nn)1+[(1)[t]t]t2dt=n=1nn+1[(1)nt]t2dt=k=12k2k+1[t]t2dt+k=02k+12k+2[t]t2dtwehavek=12k2k+1[t]t2dt=k=12k2k+12kt2dt=k=1(2k)[1t]2k2k+1=2k=1k(12k12k+1)=2k=1(12k2k+1)=2k+1<t<2k+22k2<t<2k1[t]=2k2k=02k+12k+2[t]t2dt=k=02k+12k+22k+2t2dt=k=0(2k+2)[1t]2k+12k+2=k=0(2k+2)(12k+212k+1)=k=0(12k+22k+1).itsseemsthatthisintegralisdivefgent!

Leave a Reply

Your email address will not be published. Required fields are marked *