Question Number 89986 by M±th+et£s last updated on 20/Apr/20
$$\int_{\mathrm{0}} ^{\mathrm{1}} \left(−\mathrm{1}\right)^{\lfloor\frac{\mathrm{1}}{{x}}\rfloor} \:{dx} \\ $$
Commented by M±th+et£s last updated on 20/Apr/20
$${nice}\:{and}\:{correct}\:{solution}\:{thank}\:{you} \\ $$$${sir} \\ $$
Commented by mathmax by abdo last updated on 20/Apr/20
$${changement}\:\frac{\mathrm{1}}{{x}}={t}\:{give} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \left(−\mathrm{1}\right)^{\left[\frac{\mathrm{1}}{{x}}\right]} \:{dx}\:=−\int_{\mathrm{1}} ^{+\infty} \:\left(−\mathrm{1}\right)^{\left[{t}\right]} \left(−\frac{{dt}}{{t}^{\mathrm{2}} }\right) \\ $$$$=\int_{\mathrm{1}} ^{+\infty} \:\frac{\left(−\mathrm{1}\right)^{\left[{t}\right]} }{{t}^{\mathrm{2}} }{dt}\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:\int_{{n}} ^{{n}+\mathrm{1}} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{{t}^{\mathrm{2}} }{dt} \\ $$$$=\sum_{{n}=\mathrm{1}} ^{\infty} \left(−\mathrm{1}\right)^{{n}} \left[−\frac{\mathrm{1}}{{t}}\right]_{{n}} ^{{n}+\mathrm{1}} \:=\sum_{{n}=\mathrm{1}} ^{\infty} \left(−\mathrm{1}\right)^{{n}} \left\{\frac{\mathrm{1}}{{n}}−\frac{\mathrm{1}}{{n}+\mathrm{1}}\right\} \\ $$$$=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}}−\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}+\mathrm{1}}\:\:{we}\:{have} \\ $$$$\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}}=−{ln}\left(\mathrm{2}\right) \\ $$$$\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}+\mathrm{1}}\:=\sum_{{n}=\mathrm{2}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{{n}}\:=−\sum_{{n}=\mathrm{2}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}} \\ $$$$=−\left(\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}}+\mathrm{1}\right)\:={ln}\left(\mathrm{2}\right)−\mathrm{1}\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\left(−\mathrm{1}\right)^{\left[\frac{\mathrm{1}}{{x}}\right]} {dx}\:=−{ln}\left(\mathrm{2}\right)−{ln}\left(\mathrm{2}\right)+\mathrm{1}\:=\mathrm{1}−\mathrm{2}{ln}\left(\mathrm{2}\right) \\ $$
Commented by mathmax by abdo last updated on 20/Apr/20
$${you}\:{are}\:{welcome}. \\ $$