Question Number 150627 by puissant last updated on 14/Aug/21
$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\left(−\mathrm{1}\right)^{{E}\left(\frac{\mathrm{1}}{{x}}\right)} {dx}}{{x}} \\ $$
Answered by puissant last updated on 14/Aug/21
$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\left(−\mathrm{1}\right)^{{E}\left(\frac{\mathrm{1}}{{x}}\right)} }{{x}}{dx} \\ $$$$\left.\forall\:{x}\in\right]\mathrm{0};\mathrm{1}\left[,\right. \\ $$$${E}\left(\frac{\mathrm{1}}{{x}}\right)\:{existe}\:{et}\:{E}\left(\frac{\mathrm{1}}{{x}}\right)={k}\:\Leftrightarrow\:{k}\leqslant\frac{\mathrm{1}}{{x}}<{k}+\mathrm{1} \\ $$$$\left.\Leftrightarrow\left.\:{x}\:\in\:\right]\frac{\mathrm{1}}{{k}+\mathrm{1}};\frac{\mathrm{1}}{{k}}\right]\: \\ $$$$\left.{s}\left.{oit}\:{X}\in\right]\mathrm{0};\mathrm{1}\right],\:\exists\:!\:{n}/\:\frac{\mathrm{1}}{{n}+\mathrm{1}}<{X}\leqslant\frac{\mathrm{1}}{{n}}\:\wedge\:{lim}_{{X}\rightarrow\mathrm{0}^{+} } {n}=+\infty \\ $$$${on}\:{a}: \\ $$$$\int_{{X}} ^{\mathrm{1}} \frac{\left(−\mathrm{1}\right)^{{E}\left(\frac{\mathrm{1}}{{x}}\right)} }{{x}}{dx} \\ $$$$=\int_{{X}} ^{\frac{\mathrm{1}}{{n}}} \frac{\left(−\mathrm{1}\right)^{{n}} }{{x}}{dx}+\underset{{k}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\sum}}\int_{\frac{\mathrm{1}}{{k}+\mathrm{1}}} ^{\frac{\mathrm{1}}{{k}}} \frac{\left(−\mathrm{1}\right)^{{k}} }{{x}}{dx} \\ $$$$=\left(−\mathrm{1}\right)^{{n}} {ln}\left(\frac{\mathrm{1}}{{nX}}\right)+\underset{{k}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\sum}}\left(−\mathrm{1}\right)^{{k}} {ln}\left(\frac{{k}+\mathrm{1}}{{k}}\right) \\ $$$${or}\:\:\frac{{n}}{{n}+\mathrm{1}}<{nX}\leqslant\mathrm{1} \\ $$$$\Rightarrow\:{lim}_{{X}\rightarrow\mathrm{0}^{+} } {ln}\left(\frac{\mathrm{1}}{{nX}}\right)=\mathrm{0} \\ $$$$\left(−\mathrm{1}\right)^{{k}} {ln}\left(\mathrm{1}+\frac{\mathrm{1}}{{k}}\right)\:{converge}. \\ $$$${D}'{ou}\:{lim}_{{X}\rightarrow\mathrm{0}^{+} } \int_{{X}} ^{\mathrm{1}} \frac{\left(−\mathrm{1}\right)^{{E}\left(\frac{\mathrm{1}}{{x}}\right)} }{{dx}}={ln}\left(\frac{\mathrm{2}}{\pi}\right)… \\ $$