Menu Close

0-1-1-x-3-1-3-2-dx-




Question Number 53078 by gunawan last updated on 16/Jan/19
∫_0 ^1 (1/((x^3 +1)^(3/2) )) dx=...
011(x3+1)3/2dx=
Commented by MJS last updated on 17/Jan/19
≈.774606
.774606
Answered by tanmay.chaudhury50@gmail.com last updated on 17/Jan/19
1+x^3 >1+x^2   (1/(1+x^3 ))<(1/(1+x^2 ))  but in the interval [0,1]  (1/((1+x^3 )^(3/2) ))>(1/((1+x^2 )^(3/2) so))  i am rectifying  ∫_0 ^1 (dx/((1+x^3 )^(3/2) ))>∫_0 ^1 (dx/((1+x^2 )^(3/2) ))  now   ∫_0 ^1 (dx/((1+x^2 )^(3/2) ))  x=tana     ∫_0 ^(π/4) ((sec^2 a)/((1+tan^2 a)^(3/2) ))da  ∫_0 ^(π/4) ((sec^2 ada)/(sec^3 a))  ∫_0 ^(π/4) cosada  ∣sina∣_0 ^(π/4)   =(1/( (√2)))  so      I>(1/( (√2)))  I>0.71  attaching graph...  answer yet to find....
1+x3>1+x211+x3<11+x2butintheinterval[0,1]1(1+x3)32>1(1+x2)32soiamrectifying01dx(1+x3)32>01dx(1+x2)32now01dx(1+x2)32x=tana0π4sec2a(1+tan2a)32da0π4sec2adasec3a0π4cosadasina0π4=12soI>12I>0.71attachinggraphansweryettofind.
Commented by tanmay.chaudhury50@gmail.com last updated on 17/Jan/19
Commented by tanmay.chaudhury50@gmail.com last updated on 17/Jan/19
area of trapazium calculation  whenf(x)=(1/((1+x^3 )^(3/2) ))  at x=1   f(1)=(1/((2)^(3/2) ))=(1/(2(√2)))  at x=0  f(0)=(1/((1+0)^(3/2) ))=1  so area of trapazium=(1/2)[f(0)+f(1)]×1  =(1/2)(1+(1/(2(√2))))×1=0.68  from graph it is clear that area bounded i,e  ∫_0 ^1 (dx/((1+x^3 )^(3/2) ))>0.68
areaoftrapaziumcalculationwhenf(x)=1(1+x3)32atx=1f(1)=1(2)32=122atx=0f(0)=1(1+0)32=1soareaoftrapazium=12[f(0)+f(1)]×1=12(1+122)×1=0.68fromgraphitisclearthatareaboundedi,e01dx(1+x3)32>0.68

Leave a Reply

Your email address will not be published. Required fields are marked *