0-1-1-x-4-1-x-6-dx-p-2-q-12-pi-p-q- Tinku Tara June 4, 2023 Differentiation 0 Comments FacebookTweetPin Question Number 172973 by mnjuly1970 last updated on 04/Jul/22 ∫0∞1(1+x4)(1+x6)dx=p2−q12πp,q=? Answered by floor(10²Eta[1]) last updated on 04/Jul/22 x6+1=(x2)3+1=(x2+1)(x4−x2+1)I=∫0∞dx(x4+1)(x2+1)(x4−x2+1)=∫0∞(x2+12(x4+1)+16(x2+1)−2x2−13(x4−x2+1))dx=12∫0∞x2+1x4+1dx+16∫0∞dxx2+1−13∫0∞2x2−1x4−x2+1dx=arctg(x)]0∞=π2=∫0∞x2+1(x2+1)2−2x2dx=∫0∞x2+1(x2+2x+1)(x2−2x+1)dx=12∫0∞(1x2+2x+1+1x2−2x+1)dx=12∫0∞dx(x+22)2+12+12∫0∞dx(x−22)2+12=22[arctg(x2+1)]0∞+22[arctg(x2−1)]0∞=2π2=x4−x2+1=(x2+1)2−3x2∫0∞2x2−1(x2+3x+1)(x2−3x+1)dx=123∫0∞(−3x−3x2+3x+1+3x−3x2−3x+1)dx=−32∫0∞xx2+3x+1dx−12∫0∞dxx2+3x+1+32∫0∞xx2−3x+1dx−12∫0∞dxx2−3x+1=−32∫0∞x(x+32)2+14dx−12∫0∞dx(x+32)2+14+32∫0∞x(x−32)2+14dx−12∫0∞dx(x−32)2+14=−23∫0∞x(2x+3)2+1dx−2∫0∞dx(2x+3)2+1+23∫0∞x(2x−3)2+1dx−2∫0∞dx(2x−3)2+1u=2x±3⇒du=2dx,x=u∓32=−32∫3∞u−3u2+1du−∫3∞duu2+1+32∫−3∞u+3u2+1du−∫−3∞duu2+1−32∫3∞uu2+1du+12∫3∞duu2+1+32∫−3∞uu2+1du+12∫−3∞duu2+1−32∫3∞uu2+1du+32∫−3∞uu2+1du+π2t=u2+1⇒dt=2udu−34∫4∞dtt+34∫4∞dtt+π2=π2⇒I=12+16−13=12(π22)+16(π2)−13(π2)=π24−π12=32−112π⇒p=3,q=1 Commented by mnjuly1970 last updated on 04/Jul/22 bravosirbravo.. Commented by Tawa11 last updated on 06/Jul/22 Greatsir Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-107438Next Next post: Question-107445 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.