Menu Close

0-1-1-x-4-1-x-6-dx-p-2-q-12-pi-p-q-




Question Number 172973 by mnjuly1970 last updated on 04/Jul/22
  ∫_0 ^( ∞) (( 1)/((1+ x^( 4) ) (1+ x^( 6) )))dx=((p(√2) −q)/(12)) π     p ,  q=?
01(1+x4)(1+x6)dx=p2q12πp,q=?
Answered by floor(10²Eta[1]) last updated on 04/Jul/22
  x^6 +1=(x^2 )^3 +1=(x^2 +1)(x^4 −x^2 +1)  I=∫_0 ^∞ (dx/((x^4 +1)(x^2 +1)(x^4 −x^2 +1)))  =∫_0 ^∞ (((x^2 +1)/(2(x^4 +1)))+(1/(6(x^2 +1)))−((2x^2 −1)/(3(x^4 −x^2 +1))))dx  =(1/2)∫_0 ^∞ ((x^2 +1)/(x^4 +1))dx+(1/6)∫_0 ^∞ (dx/(x^2 +1))−(1/3)∫_0 ^∞ ((2x^2 −1)/(x^4 −x^2 +1))dx  ■=arctg(x)]_0 ^∞ =(π/2)  ■=∫_0 ^∞ ((x^2 +1)/((x^2 +1)^2 −2x^2 ))dx=∫_0 ^∞ ((x^2 +1)/((x^2 +(√2)x+1)(x^2 −(√2)x+1)))dx  =(1/2)∫_0 ^∞ ((1/(x^2 +(√2)x+1))+(1/(x^2 −(√2)x+1)))dx  =(1/2)∫_0 ^∞ (dx/((x+((√2)/2))^2 +(1/2)))+(1/2)∫_0 ^∞ (dx/((x−((√2)/2))^2 +(1/2)))  =((√2)/2)[arctg(x(√2)+1)]_0 ^∞ +((√2)/2)[arctg(x(√2)−1)]_0 ^∞   =(((√2)π)/2)  ■=x^4 −x^2 +1=(x^2 +1)^2 −3x^2   ∫_0 ^∞ ((2x^2 −1)/((x^2 +(√3)x+1)(x^2 −(√3)x+1)))dx  =(1/(2(√3)))∫_0 ^∞ (((−3x−(√3))/(x^2 +(√3)x+1))+((3x−(√3))/(x^2 −(√3)x+1)))dx  =−((√3)/2)∫_0 ^∞ (x/(x^2 +(√3)x+1))dx−(1/2)∫_0 ^∞ (dx/(x^2 +(√3)x+1))+((√3)/2)∫_0 ^∞ (x/(x^2 −(√3)x+1))dx−(1/2)∫_0 ^∞ (dx/(x^2 −(√3)x+1))  =−((√3)/2)∫_0 ^∞ (x/((x+((√3)/2))^2 +(1/4)))dx−(1/2)∫_0 ^∞ (dx/((x+((√3)/2))^2 +(1/4)))+((√3)/2)∫_0 ^∞ (x/((x−((√3)/2))^2 +(1/4)))dx−(1/2)∫_0 ^∞ (dx/((x−((√3)/2))^2 +(1/4)))  =−2(√3)∫_0 ^∞ (x/((2x+(√3))^2 +1))dx−2∫_0 ^∞ (dx/((2x+(√3))^2 +1))+2(√3)∫_0 ^∞ (x/((2x−(√3))^2 +1))dx−2∫_0 ^∞ (dx/((2x−(√3))^2 +1))  u=2x±(√3)⇒du=2dx, x=((u∓(√3))/2)  =−((√3)/2)∫_(√3) ^∞ ((u−(√3))/(u^2 +1))du−∫_(√3) ^∞ (du/(u^2 +1))+((√3)/2)∫_(−(√3)) ^∞ ((u+(√3))/(u^2 +1))du−∫_(−(√3)) ^∞ (du/(u^2 +1))  −((√3)/2)∫_(√3) ^∞ (u/(u^2 +1))du+(1/2)∫_(√3) ^∞ (du/(u^2 +1))+((√3)/2)∫_(−(√3)) ^∞ (u/(u^2 +1))du+(1/2)∫_(−(√3)) ^∞ (du/(u^2 +1))  −((√3)/2)∫_(√3) ^∞ (u/(u^2 +1))du+((√3)/2)∫_(−(√3)) ^∞ (u/(u^2 +1))du+(π/2)  t=u^2 +1⇒dt=2udu  ((−(√3))/4)∫_4 ^∞ (dt/t)+((√3)/4)∫_4 ^∞ (dt/t)+(π/2)=(π/2)    ⇒I=(1/2)■+(1/6)■−(1/3)■  =(1/2)(((π(√2))/2))+(1/6)((π/2))−(1/3)((π/2))  =((π(√2))/4)−(π/(12))=((3(√2)−1)/(12))π⇒p=3, q=1
x6+1=(x2)3+1=(x2+1)(x4x2+1)I=0dx(x4+1)(x2+1)(x4x2+1)=0(x2+12(x4+1)+16(x2+1)2x213(x4x2+1))dx=120x2+1x4+1dx+160dxx2+11302x21x4x2+1dx◼=arctg(x)]0=π2◼=0x2+1(x2+1)22x2dx=0x2+1(x2+2x+1)(x22x+1)dx=120(1x2+2x+1+1x22x+1)dx=120dx(x+22)2+12+120dx(x22)2+12=22[arctg(x2+1)]0+22[arctg(x21)]0=2π2◼=x4x2+1=(x2+1)23x202x21(x2+3x+1)(x23x+1)dx=1230(3x3x2+3x+1+3x3x23x+1)dx=320xx2+3x+1dx120dxx2+3x+1+320xx23x+1dx120dxx23x+1=320x(x+32)2+14dx120dx(x+32)2+14+320x(x32)2+14dx120dx(x32)2+14=230x(2x+3)2+1dx20dx(2x+3)2+1+230x(2x3)2+1dx20dx(2x3)2+1u=2x±3du=2dx,x=u32=323u3u2+1du3duu2+1+323u+3u2+1du3duu2+1323uu2+1du+123duu2+1+323uu2+1du+123duu2+1323uu2+1du+323uu2+1du+π2t=u2+1dt=2udu344dtt+344dtt+π2=π2I=12◼+16◼13◼=12(π22)+16(π2)13(π2)=π24π12=32112πp=3,q=1
Commented by mnjuly1970 last updated on 04/Jul/22
bravo sir bravo..
bravosirbravo..
Commented by Tawa11 last updated on 06/Jul/22
Great sir
Greatsir

Leave a Reply

Your email address will not be published. Required fields are marked *