Question Number 156218 by talminator2856791 last updated on 09/Oct/21
$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\frac{\mathrm{1}}{\:\sqrt{{x}\sqrt{{x}^{\mathrm{2}} \sqrt{{x}^{\mathrm{3}} \sqrt{{x}^{\mathrm{4}} +\mathrm{1}}}}}\:}\:{dx} \\ $$$$\: \\ $$
Commented by talminator2856791 last updated on 09/Oct/21
$$\:\mathrm{who}\:\mathrm{can}\:\mathrm{solve}\:\mathrm{this}\:\mathrm{monster}?\: \\ $$
Commented by MJS_new last updated on 09/Oct/21
thank you for making it clear yoz're only posting questions for fun. I won't have to care anymore.
but one last thing:
1+1=2
now go see if wolfram alpha gives the same answer. in this case I'm guilty of copying. or your logic is faulty.
Commented by MJS_new last updated on 10/Oct/21
you mean somebody pays for wolfram alpha only to answer questions on this forum? the free version only gives results without the path...
Commented by talminator2856791 last updated on 10/Oct/21
$$\:\mathrm{your}\:\mathrm{logic}\:\mathrm{is}\:\mathrm{faulty}\:\mathrm{as}\:\mathrm{1}+\mathrm{1}=\mathrm{2}\:\: \\ $$$$\:\mathrm{is}\:\mathrm{not}\:\mathrm{equivalent}\:\mathrm{to}\:\mathrm{monster}\:\mathrm{integral}\: \\ $$$$\:\mathrm{when}\:\mathrm{you}\:\mathrm{use}\:\mathrm{same}\:\mathrm{variables}\:\mathrm{and}\:\: \\ $$$$\:\mathrm{techniques}\:\mathrm{as}\:\mathrm{wolframalpha},\:\: \\ $$$$\:\mathrm{it}\:\mathrm{is}\:\mathrm{very}\:\mathrm{questionable}.\:\: \\ $$
Answered by mindispower last updated on 09/Oct/21
$$=\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{{x}}.\sqrt{\sqrt{{x}^{\mathrm{2}} }}.\sqrt{\sqrt{\sqrt{{x}^{\mathrm{3}} }.\:}.}\left(\mathrm{1}+{x}^{\mathrm{4}} \right)^{\frac{\mathrm{1}}{\mathrm{16}}} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{3}}{\mathrm{8}}} \left(\mathrm{1}+{x}^{\mathrm{4}} \right)^{\frac{\mathrm{1}}{\mathrm{16}}} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{\frac{\mathrm{11}}{\mathrm{8}}} \left(\mathrm{1}+{x}^{\mathrm{4}} \right)^{\frac{\mathrm{1}}{\mathrm{16}}} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\mathrm{4}}{t}^{\frac{\mathrm{11}}{\mathrm{32}}−\frac{\mathrm{3}}{\mathrm{4}}} \left(\mathrm{1}+{t}\right)^{\frac{\mathrm{1}}{\mathrm{16}}} {dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\mathrm{1}} {t}^{\frac{−\mathrm{13}}{\mathrm{32}}} \left(\mathrm{1}+{t}\right)^{\frac{\mathrm{1}}{\mathrm{16}}} {dt} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {t}^{{x}} \left(\mathrm{1}+{t}\right)^{{y}} {dt}=,−\mathrm{1}<{x}\:,{g}\left({x},{y}\right) \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}+\underset{{n}\geqslant\mathrm{1}} {\sum}\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\prod}}\frac{\left({y}−{k}\right)}{{n}!}{t}^{{n}} \right){t}^{{x}} {dt} \\ $$$$=\frac{\mathrm{1}}{{x}+\mathrm{1}}+\underset{{n}\geqslant\mathrm{1}} {\sum}\int_{\mathrm{0}} ^{\mathrm{1}} \left(−\mathrm{1}\right)^{{n}} \underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\prod}}\frac{\left({k}−{y}\right)}{{n}!}{t}^{{n}+{x}} {dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{1}+{x}}+\underset{{n}\geqslant\mathrm{1}} {\sum}\left(−\mathrm{1}\right)^{{n}} \frac{\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\prod}}\left(−{y}+{k}\right)}{{n}!.\left({n}+{x}+\mathrm{1}\right)} \\ $$$${n}+{x}+\mathrm{1}=\frac{\Gamma\left({n}+{x}+\mathrm{2}\right)}{\Gamma\left({n}+{x}+\mathrm{1}\right)} \\ $$$$=\frac{\mathrm{1}}{\mathrm{1}+{x}}+\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\left(−\mathrm{1}\right)^{{n}} \underset{{k}} {\overset{{n}−\mathrm{1}} {\prod}}\left(−{y}+{k}\right)\left({x}+\mathrm{1}+{k}\right)}{\left(\mathrm{1}+{x}\right){n}!.\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\prod}}\left({x}+\mathrm{2}+{k}\right)}\: \\ $$$$=\frac{\mathrm{1}}{\mathrm{1}+{x}}+\frac{\mathrm{1}}{\mathrm{1}+{x}}\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\left(−{y}\right)_{{n}} \left(\mathrm{1}+{x}\right)_{{n}} }{\left({x}+\mathrm{2}\right)_{{n}} }.\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}!} \\ $$$$=\frac{\mathrm{1}}{\mathrm{1}+{x}}\left(\mathrm{1}+\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\left(−{y}\right)_{{n}} \left(\mathrm{1}+{x}\right)_{{n}} }{\left(\mathrm{2}+{x}\right)_{{n}} }.\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}!}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{1}+{x}}\left(_{\mathrm{2}} {F}_{\mathrm{1}} \left(−{y},\mathrm{1}+{x};\mathrm{2}+{x};−\mathrm{1}\right)\right. \\ $$$${x}=\frac{−\mathrm{13}}{\mathrm{32}},{y}=\frac{\mathrm{1}}{\mathrm{16}}\:{We}\:{get} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{{x}\sqrt{{x}^{\mathrm{2}} \sqrt{{x}^{\mathrm{3}} \sqrt{\mathrm{1}+{x}^{\mathrm{4}} }}}}{dx}=\frac{\mathrm{32}}{\mathrm{19}}\:_{\mathrm{2}} {F}_{\mathrm{1}} \left(−\frac{\mathrm{1}}{\mathrm{16}},\frac{\mathrm{19}}{\mathrm{32}};\frac{\mathrm{51}}{\mathrm{32}},−\mathrm{1}\right) \\ $$
Commented by talminator2856791 last updated on 09/Oct/21
$$\:\mathrm{all}\:\mathrm{the}\:\mathrm{answers}\:\mathrm{he}\:\mathrm{post}\:\mathrm{is}\:\mathrm{same}\:\mathrm{as}\:\: \\ $$$$\:\mathrm{the}\:\mathrm{wolframalpha}. \\ $$
Commented by talminator2856791 last updated on 10/Oct/21
$$\:\mathrm{Mr}\:\mathrm{W}\:\mathrm{i}\:\mathrm{dont}\:\mathrm{want}\:\mathrm{to}\:\mathrm{examine}\:\mathrm{people}\:\: \\ $$$$\:\mathrm{i}\:\mathrm{do}\:\mathrm{this}\:\mathrm{for}\:\mathrm{fun}\:\: \\ $$
Commented by talminator2856791 last updated on 09/Oct/21
$$\:\mathrm{i}\:\mathrm{delete}\:\mathrm{my}\:\mathrm{comment}\:\mathrm{because}\:\mathrm{i}\:\mathrm{know}\:\: \\ $$$$\:\mathrm{Mr}\:\mathrm{W}\:\mathrm{will}\:\mathrm{look}\:\mathrm{for}\:\mathrm{a}\:\mathrm{fight}. \\ $$$$\:\mathrm{and}\:\mathrm{i}\:\mathrm{dont}\:\mathrm{want}\:\mathrm{to}\:\mathrm{fight}. \\ $$
Commented by peter frank last updated on 09/Oct/21
$$\mathrm{true}\:\mathrm{sir}\:\mathrm{Mr}\:\mathrm{W}.\mathrm{i}\:\mathrm{think}\:\mathrm{the}\:\mathrm{only}\:\mathrm{way} \\ $$$$\mathrm{do}\:\mathrm{not}\:\mathrm{help}\:\mathrm{him}\: \\ $$
Commented by peter frank last updated on 09/Oct/21
$$\mathrm{To}\:\mathrm{talminator}.\mathrm{you}\:\mathrm{have}\:\mathrm{to}\:\mathrm{show}\:\mathrm{some}\:\mathrm{respect} \\ $$
Commented by talminator2856791 last updated on 10/Oct/21
$$\:\mathrm{you}\:\mathrm{think}\:\mathrm{posting}\:\mathrm{wolframlpha}\:\: \\ $$$$\:\mathrm{answers}\:\mathrm{is}\:\mathrm{respect}?\:\:\: \\ $$
Commented by talminator2856791 last updated on 10/Oct/21
$$\:\mathrm{Mr}\:\mathrm{W}\:\mathrm{why}\:\mathrm{you}\:\mathrm{delete}\:\mathrm{your}\:\mathrm{post}\:\mathrm{now}?\:\: \\ $$$$\:\mathrm{mr}\:\mathrm{complain}\:\: \\ $$$$\:\mathrm{you}\:\mathrm{questioned}\:\mathrm{me}\:\mathrm{and}\:\mathrm{i}\:\mathrm{responded}.\:\: \\ $$
Commented by mr W last updated on 10/Oct/21
$${i}\:{deleted}\:{my}\:{comments}\:{basically} \\ $$$${because}\:{i}\:{don}'{t}\:{want}\:{to}\:{have}\:{anything} \\ $$$${to}\:{do}\:{with}\:{people}\:{like}\:{you}.\:{i}\:{said} \\ $$$${you}\:{are}\:{posting}\:{questions}\:{here}\:{not} \\ $$$${because}\:{you}\:{want}\:{to}\:{learn}\:{or}\:{you}\:{are} \\ $$$${interested}\:{in}\:{ways}\:{how}\:{to}\:{solve}.\:{in} \\ $$$${fact}\:{you}\:{are}\:{posting}\:{the}\:{questions}\: \\ $$$${to}\:“{examine}''\:{other}\:{people}.\:{actually} \\ $$$${you}\:{have}\:{admited}\:{that}\:{what}\:{i}\:{said}. \\ $$$${so}\:{it}'{s}\:{clear}\:{for}\:{me}\:{now}\:{and}\:\:{i}\:{won}'{t}\: \\ $$$${spend}\:{any}\:{my}\:{time}\:{for}\:{it}. \\ $$$${p}.{s}.:\:{i}\:{have}\:{never}\:{wanted}\:{to}\:{fight} \\ $$$${anybody},\:{you}\:{neither}.\:{what}\:{i} \\ $$$${requested}\:\:{is}\:\:{solely}\:{respect}\: \\ $$$${to}\:{other}\:{people}.\:{that}\:{you}\:{called}\:{me} \\ $$$$“{mr}\:{complain}''\:{shows}\:{that}\:{you}\: \\ $$$${absolutely}\:{don}'{t}\:{know}\:{what}\:{is}\:{respect}. \\ $$