Menu Close

0-1-2-0-pi-2-1-ycos-x-1-dxdy-




Question Number 86613 by Ar Brandon last updated on 29/Mar/20
∫_0 ^(1/2) ∫_0 ^(π/2) (1/(ycos(x)+1))dxdy
0120π21ycos(x)+1dxdy
Commented by abdomathmax last updated on 29/Mar/20
∫_0 ^(π/2)  (dx/(y cosx+1)) =_(tan((x/2))=t)    ∫_0 ^1   ((2dt)/((1+t^2 )(y((1−t^2 )/(1+t^2 ))+1)))  =2∫_0 ^1  (dt/(y−yt^2  +1+t^2 )) =2∫_0 ^1   (dy/((1−y)t^2 +1+y))  =(2/((1−y)))∫_0 ^1  (dy/(t^2  +((1+y)/(1−y))))  =_(t =(√((1+y)/(1−y)))u)     (2/((1−y)))×((1−y)/(1+y))  ∫_0 ^(√((1−y)/(1+y)))     (1/(1+u^2 ))×(√((1+y)/(1−y)))du  = (2/( (√(1−y^2 )))) arctan((√((1−y)/(1+y)))) ⇒  ∫_0 ^(1/2)  ∫_0 ^(π/2)   ((dxdy)/(ycosx +1)) =2 ∫_0 ^(1/2) (1/( (√(1−y^2 )))) arctan((√((1−y)/(1+y))))dy  ...be continued...
0π2dxycosx+1=tan(x2)=t012dt(1+t2)(y1t21+t2+1)=201dtyyt2+1+t2=201dy(1y)t2+1+y=2(1y)01dyt2+1+y1y=t=1+y1yu2(1y)×1y1+y01y1+y11+u2×1+y1ydu=21y2arctan(1y1+y)0120π2dxdyycosx+1=201211y2arctan(1y1+y)dybecontinued
Commented by mind is power last updated on 30/Mar/20
y=cos(2θ)  aarctan((√((1−y)/(1+y))))=arctan(tan(θ))=θ
y=cos(2θ)aarctan(1y1+y)=arctan(tan(θ))=θ
Commented by mathmax by abdo last updated on 30/Mar/20
changement y=cosθ give   ∫_0 ^(1/2)   (1/( (√(1−y^2 ))))arctan((√((1−y)/(1+y))))dy =∫_(π/2) ^(π/3)  (1/(sinθ)) arctan((√((2sin^2 ((θ/2)))/(2cos^2 ((θ/2))))))(−sinθ)dθ  = ∫_(π/3) ^(π/2)  arctan(tan((θ/2))) dθ =(1/2) ∫_(π/3) ^(π/2) θ dθ =(1/2)[(θ^2 /2)]_(π/3) ^(π/2)   =(1/4)( (π^2 /4)−(π^2 /9)) =(1/4)(((9π^2 −4π^2 )/(36))) =((5π^2 )/(144))
changementy=cosθgive01211y2arctan(1y1+y)dy=π2π31sinθarctan(2sin2(θ2)2cos2(θ2))(sinθ)dθ=π3π2arctan(tan(θ2))dθ=12π3π2θdθ=12[θ22]π3π2=14(π24π29)=14(9π24π236)=5π2144
Commented by mathmax by abdo last updated on 30/Mar/20
thank you sir mind..
thankyousirmind..
Commented by Ar Brandon last updated on 30/Mar/20
great  job
greatjob
Commented by abdomathmax last updated on 30/Mar/20
you are welcome sir.
youarewelcomesir.

Leave a Reply

Your email address will not be published. Required fields are marked *