0-1-2-ix-2-dx-pi-2- Tinku Tara June 4, 2023 Differentiation 0 Comments FacebookTweetPin Question Number 120553 by snipers237 last updated on 01/Nov/20 ∫0∞∣Γ(12−ix)∣2dx=π2 Answered by mnjuly1970 last updated on 01/Nov/20 solution:weknowthat:Γ−(z)=Γ(z−)(why?)deductiblebyusing:Γ(z)=1ze−γz∏k⩾0(ezk1+zk)∣Γ(12−ix)∣2=Γ(12−ix)Γ(12+ix)=Γ(12−ix)Γ(1−(12−ix))=eulerreflectionformulsπsin(π(12−ix))=πcos(πix)=2πe−πx+eπx=2πeπx1+(eπx)2✓Ω=2∫0∞πeπx1+(eπx)2dx=eπx=y2∫1∞dy1+y2=2(π2)−2(π4)=π2✓✓….m.n.july.1970…. Commented by snipers237 last updated on 01/Nov/20 Γ(z)isnotalwaysequaltoΓ(z−)butΓ−(z)=Γ(z−)it′strueΓ(z)=∫0∞tz−1e−tdt=∫0∞e(re(z)−1+iIm(z))lnt−tdtΓ(z)=∫0∞ere(z)−1−t[cos(Im(z)lnt)+isin(Im(z)lnt)]dtLFYTC Commented by mnjuly1970 last updated on 01/Nov/20 youarerighticorrectedit.thankyou. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: 1-3-tan-x-1-3-tan-x-sin-2x-Next Next post: Prove-that-for-all-a-gt-0-a-a-arg-1-2-ix-dx-0-Deduce-that-f-x-arg-1-2-ix-is-an-old-function-on-R- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.