Menu Close

0-1-2-ix-2-dx-pi-2-




Question Number 120553 by snipers237 last updated on 01/Nov/20
       ∫_0 ^∞ ∣Γ((1/2) −ix)∣^2 dx = (π/2)
0Γ(12ix)2dx=π2
Answered by mnjuly1970 last updated on 01/Nov/20
solution:    we know that : Γ^− (z)=Γ(z^− )(why?)    deductible by using:Γ(z)=(1/z)e^(−γz) Π_(k≥0) ((e^(z/k) /(1+(z/k))))     ∣Γ((1/2)−ix)∣^2 =Γ((1/2)−ix)Γ((1/2)+ix)  =Γ((1/2)−ix)Γ(1−((1/2)−ix))  =^(euler reflection formuls) (π/(sin(π((1/2)−ix))))     =(π/(cos(πix)))=((2π)/(e^(−πx) +e^(πx) ))     =((2πe^(πx) )/(1+(e^(πx) )^2 ))  ✓  Ω=2∫_0 ^( ∞) ((πe^(πx) )/(1+(e^(πx) )^2 ))dx=^(e^(πx) =y) 2∫_1 ^( ∞) (dy/(1+y^2 ))   =2((π/2))−2((π/4))=(π/2)  ✓✓                ....m.n.july.1970....
solution:weknowthat:Γ(z)=Γ(z)(why?)deductiblebyusing:Γ(z)=1zeγzk0(ezk1+zk)Γ(12ix)2=Γ(12ix)Γ(12+ix)=Γ(12ix)Γ(1(12ix))=eulerreflectionformulsπsin(π(12ix))=πcos(πix)=2πeπx+eπx=2πeπx1+(eπx)2Ω=20πeπx1+(eπx)2dx=eπx=y21dy1+y2=2(π2)2(π4)=π2.m.n.july.1970.
Commented by snipers237 last updated on 01/Nov/20
Γ(z) is not always equal to Γ(z^− )  but  Γ^− (z)=Γ(z^− )   it′s true  Γ(z)=∫_0 ^∞ t^(z−1) e^(−t) dt=∫_0 ^∞ e^((re(z)−1+iIm(z))lnt−t) dt  Γ(z)=∫_0 ^∞ e^(re(z)−1−t) [cos(Im(z)lnt)+i sin(Im(z)lnt)]dt  LFYTC
Γ(z)isnotalwaysequaltoΓ(z)butΓ(z)=Γ(z)itstrueΓ(z)=0tz1etdt=0e(re(z)1+iIm(z))lnttdtΓ(z)=0ere(z)1t[cos(Im(z)lnt)+isin(Im(z)lnt)]dtLFYTC
Commented by mnjuly1970 last updated on 01/Nov/20
you are right   i corrected it.  thank you.
youarerighticorrectedit.thankyou.

Leave a Reply

Your email address will not be published. Required fields are marked *