Menu Close

0-1-2-x-sin-1-x-2-1-x-4-dx-2-x-tanh-2-1-x-dx-




Question Number 115781 by bemath last updated on 28/Sep/20
∫_0 ^(1/( (√2)))  ((x sin^(−1) (x^2 ))/( (√(1−x^4 )))) dx =?  ∫2^(−x)  tanh (2^(1−x) ) dx =?
120xsin1(x2)1x4dx=?2xtanh(21x)dx=?
Answered by bobhans last updated on 28/Sep/20
I=∫_0 ^(1/( (√2)))  ((x.sin^(−1) (x^2 ))/( (√(1−x^4 )))) dx  let u = sin^(−1) (x^2 ) → { ((x=(1/( (√2))) →u=(π/6))),((x=0→u=0)) :}  I=∫_0 ^(π/6)  (1/2)u du = [ (1/4)u^2  ]_0 ^(π/6)   = (1/4)×(π^2 /(36)) = (π^2 /(144))
I=120x.sin1(x2)1x4dxletu=sin1(x2){x=12u=π6x=0u=0I=π6012udu=[14u2]0π6=14×π236=π2144
Answered by Dwaipayan Shikari last updated on 28/Sep/20
∫_0 ^(1/( (√2))) ((xsin^(−1) (x^2 ))/( (√(1−x^4 ))))dx  (1/2)∫_0 ^(1/2) ((sin^(−1) (t))/( (√(1−t^2 ))))dt  (1/4)[(sin^(−1) (t))^2 ]_0 ^(1/2) =(1/4).((π/6))^2 =(π^2 /(144))
012xsin1(x2)1x4dx12012sin1(t)1t2dt14[(sin1(t))2]012=14.(π6)2=π2144
Answered by mathmax by abdo last updated on 28/Sep/20
changement arcsin(x^2 )=t  give x^2  =sint ⇒x =(√(sint)) ⇒  ∫_0 ^(1/( (√2)))   ((xarcsin(x^2 ))/( (√(1−x^4 ))))dx =∫_0 ^(π/6)  ((t(√(sint)))/( (√(1−sin^2 t))))×((cost)/(2(√(sint)))) dt  =(1/2) ∫_0 ^(π/6)  tdt =(1/2)[(t^2 /2)]_0 ^(π/6)  =(1/4)×(π^2 /(36)) =(π^2 /(144))
changementarcsin(x2)=tgivex2=sintx=sint012xarcsin(x2)1x4dx=0π6tsint1sin2t×cost2sintdt=120π6tdt=12[t22]0π6=14×π236=π2144
Answered by Ar Brandon last updated on 28/Sep/20
I=∫2^(−x) tanh(2^(1−x) )dx=−(1/(2ln2))∫−2^(1−x) ln2tanh(2^(1−x) )dx     =−(1/(2ln2))∫tanh(u)du           {(d/dx)(2^(1−x) )=−2^(1−x) ln2}     =−(1/(2ln2)){utanh(u)−∫(u/(1−u^2 ))du}     =−(1/(2ln2)){utanh(u)+((ln∣1−u^2 ∣)/2)}+C     =−(1/(2ln2)){2^(1−x) tanh(2^(1−x) )+((ln∣1−2^(2(1−x)) ∣)/2)}+C
I=2xtanh(21x)dx=12ln221xln2tanh(21x)dx=12ln2tanh(u)du{ddx(21x)=21xln2}=12ln2{utanh(u)u1u2du}=12ln2{utanh(u)+ln1u22}+C=12ln2{21xtanh(21x)+ln122(1x)2}+C

Leave a Reply

Your email address will not be published. Required fields are marked *