Menu Close

0-1-3-x-2n-ln-1-x-dx-




Question Number 128633 by Lordose last updated on 09/Jan/21
Ω = ∫_0 ^( (1/3)) x^(2n) ln(1−x)dx
Ω=013x2nln(1x)dx
Answered by mathmax by abdo last updated on 09/Jan/21
let try another way  x=(t/3) ⇒  Ω=∫_0 ^1  ((t/3))^(2n) ln(1−(t/3))(dt/3) =(1/3^(2n+1) )∫_0 ^1  t^(2n) ln(((3−t)/3))dt  =(1/3^(2n+1) ) ∫_0 ^1  t^(2n) ln(3−t)dt−(1/3^(2n+1) )ln(3)[(t^(2n+1) /(2n+1))]_0 ^1   =(1/3^(2n+1) )∫_0 ^1  t^(2n) ln(3−t)dt −((ln3)/((2n+1)3^(2n+1) ))  we have by parts  ∫_0 ^1  t^(2n) ln(3−t)dt =[(t^(2n+1) /(2n+1))ln(3−t)]_0 ^1 −∫_0 ^1 (t^(2n+1) /(2n+1))×((−1)/(3−t))dt  =(1/(2n+1))ln(2)+(1/(2n+1))∫_0 ^1  (t^(2n+1) /(3−t))dt  and  ∫_0 ^1  (t^(2n+1) /(3−t)) dt =_(3−t=u)    −∫_2 ^3   (((3−u)^(2n+1) )/u)(−du)  =−∫_2 ^3    (((u−3)^(2n+1) )/u) du =−∫_2 ^3  ((Σ_(k=0) ^(2n+1)  C_(2n+1) ^k  u^k (−3)^(2n+1−k) )/u)du  =3^(2n+1)   Σ_(k=1) ^(2n+1)  (−3)^(−k)  C_(2n+1) ^k  ∫_2 ^3  u^(k−1)  du −3^(2n+1) ln((3/2))  =3^(2n+1)  Σ_(k=0) ^(2n+1)  (−3)^(−k)  C_(2n+1) ^k  (1/k){ 3^(k−1) −2^(k−1) }−3^(2n+1) ln((3/2))...
lettryanotherwayx=t3Ω=01(t3)2nln(1t3)dt3=132n+101t2nln(3t3)dt=132n+101t2nln(3t)dt132n+1ln(3)[t2n+12n+1]01=132n+101t2nln(3t)dtln3(2n+1)32n+1wehavebyparts01t2nln(3t)dt=[t2n+12n+1ln(3t)]0101t2n+12n+1×13tdt=12n+1ln(2)+12n+101t2n+13tdtand01t2n+13tdt=3t=u23(3u)2n+1u(du)=23(u3)2n+1udu=23k=02n+1C2n+1kuk(3)2n+1kudu=32n+1k=12n+1(3)kC2n+1k23uk1du32n+1ln(32)=32n+1k=02n+1(3)kC2n+1k1k{3k12k1}32n+1ln(32)
Answered by mathmax by abdo last updated on 09/Jan/21
Ω=∫_0 ^(1/3)  x^(2n) ln(1−x)dx  by parts u^′  =x^(2n) [and v=ln(1−x)  Ω=[(x^(2n+1) /(2n+1))ln(1−x)]_0 ^(1/3) −∫_0 ^(1/3)  (x^(2n+1) /(2n+1))×((−1)/(1−x))dx  =(1/(2n+1(3)^(2n+1) ))ln((2/3))+(1/(2n+1))∫_0 ^(1/3)  (x^(2n+1) /(1−x))dx  but  ∫_0 ^(1/3)  (x^(2n+1) /(1−x))dx =∫_0 ^(1/3)  ((x^(2n+1) −1+1)/(1−x))dx =∫_0 ^(1/3) (((x−1)(1+x+x^2  +...+x^(2n) ))/(1−x))dx  +[−ln(1−x)]_0 ^(1/3)  =−∫_0 ^(1/3) (Σ_(k=0) ^(2n)  x^k )dx−ln((2/3))  =−Σ_(k=0) ^(2n)  [(x^(k+1) /(k+1))]_0 ^(1/3)  −ln2 +ln3  =−Σ_(k=0) ^(2n)  (1/((k+1)3^(k+1) )) +ln3−ln2  rsst to find the value of this serie...
Ω=013x2nln(1x)dxbypartsu=x2n[andv=ln(1x)Ω=[x2n+12n+1ln(1x)]013013x2n+12n+1×11xdx=12n+1(3)2n+1ln(23)+12n+1013x2n+11xdxbut013x2n+11xdx=013x2n+11+11xdx=013(x1)(1+x+x2++x2n)1xdx+[ln(1x)]013=013(k=02nxk)dxln(23)=k=02n[xk+1k+1]013ln2+ln3=k=02n1(k+1)3k+1+ln3ln2rssttofindthevalueofthisserie

Leave a Reply

Your email address will not be published. Required fields are marked *