Menu Close

0-1-3x-3-x-2-2x-4-x-2-3x-2-dx-




Question Number 159960 by tounghoungko last updated on 23/Nov/21
    ∫_0 ^( 1)  ((3x^3 −x^2 +2x−4)/( (√(x^2 −3x+2)))) dx =?
013x3x2+2x4x23x+2dx=?
Answered by MJS_new last updated on 23/Nov/21
∫_0 ^1 ((3x^3 −x^2 +2x−4)/( (√(x^2 −3x+2))))dx=  =∫_0 ^1 (((x−1)(3x^2 +2x+4))/( (√((x−1)(x−2)))))dx=       [t=(√((x−1)/(x−2))) → dx=−2(√((x−1)(x−2)^3 ))dt]  =2∫_((√2)/2) ^0 ((t^2 (20t^4 −26t^2 +9))/((t^2 −1)^4 ))dt=  =−2∫_0 ^((√2)/2) ((t^2 (20t^4 −26t^2 +9))/((t^2 −1)^4 ))dt=       [Ostrogradski′s Method]  =[ ((t(185t^4 −312t^2 +135))/(8(t^2 −1)^3 ))]_0 ^((√2)/2) −((135)/8)∫_0 ^((√2)/2) (dt/(t^2 −1))=  =[ ((t(185t^4 −312t^2 +135))/(8(t^2 −1)^3 ))−((135)/(16))ln ((t−1)/(t+1))]_0 ^((√2)/2) =  =−((101(√2))/8)+((135)/8)ln (1+(√2))
103x3x2+2x4x23x+2dx==10(x1)(3x2+2x+4)(x1)(x2)dx=[t=x1x2dx=2(x1)(x2)3dt]=2022t2(20t426t2+9)(t21)4dt==2220t2(20t426t2+9)(t21)4dt=[OstrogradskisMethod]=[t(185t4312t2+135)8(t21)3]0221358220dtt21==[t(185t4312t2+135)8(t21)313516lnt1t+1]022==10128+1358ln(1+2)

Leave a Reply

Your email address will not be published. Required fields are marked *