0-1-arc-tan-x-2-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 117403 by bemath last updated on 11/Oct/20 ∫10(arctanx)2dx=? Commented by MJS_new last updated on 11/Oct/20 usearctanx=ln(1+ix)−ln(1−ix)2i⇒−14∫10(ln2(1+ix)−2ln(1+ix)ln(1−ix)+ln2(1−ix))dxandthesearesolveable(byparts) Answered by mindispower last updated on 11/Oct/20 =[xarctan2(x)]01−∫012x1+x2arctan(x)dx=π216−Iletarctan(x)=tI=−∫0π42tg(t)t1+tg2(t).(1+tg2(t))dt=−2∫0π4tg(t)tdtbypart=−2([−tln(cost)]0π4+∫0π4ln(cos(t))dt=−π4ln(2)−2∫0π4ln(cos(t))dtonewaytoofinditleta=∫0π4ln(cos(t))dt=∫0π412ln(sin(t)cos(t).1tg(t))dt=∫0π4ln(sin(2t)2)2dt−12∫0π4ln(tg(t))dttg(t)=s2t=u⇒14∫0π2ln(u)du−∫0π4ln(2)duinfirst∫0π4ln(tg(t))dt=∫01ln(s)1+s2ds=Σ∫01(−1)ks2k+1ln(s)ds=−Σ(−1)k.1(2k+1)2=−β(2)=−G,Gcatalanconstanteknowing∫0π2ln(sin(t))dtgiveuscloseforme2ndusefourierserieofln(cos(t))=−ln(2)−∑n⩾1cos(2(2n−1)t)2n−1giveuseresulteimediatlywithe∑n⩾1(−1)n−1(2n−1)2=β(2) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-51865Next Next post: Question-51869 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.