Menu Close

0-1-arcsin-x-x-dx-




Question Number 156616 by amin96 last updated on 13/Oct/21
∫_0 ^1 ((arcsin(x))/x)dx=?
01arcsin(x)xdx=?
Answered by mindispower last updated on 13/Oct/21
by part=−∫_0 ^1 ((ln(x))/( (√(1−x^2 ))))  x^2 =u=−∫_0 ^1 ((ln(u))/(2(√(1−u)))).(du/(2(√u)))  =−(1/4)∫_0 ^1 ln(u)u^(−(1/2)) (1−u)^(−(1/2)) du  =−(1/4)∂_a ∫_0 ^1 u^a (1−u)^(−(1/2)) du∣_(=(1/2))   =−(1/4)∂_a β(a,(1/2))∣_(a=(1/2_ ))   =−(1/4)(Ψ((1/2))−Ψ(1))β((1/2),(1/2))
bypart=01ln(x)1x2x2=u=01ln(u)21u.du2u=1401ln(u)u12(1u)12du=14a01ua(1u)12du=12=14aβ(a,12)a=12=14(Ψ(12)Ψ(1))β(12,12)
Answered by puissant last updated on 13/Oct/21
Q=∫_0 ^1 ((arcsinx)/x)dx   IBP ⇒ Q=−∫_0 ^1 ((lnx)/( (√(1−x^2 ))))dx  x=sinu→dx=cosudu  ⇒ Q=−∫_0 ^(π/2) ((ln(sinu))/(cosu))cosudu  ⇒ Q=−∫_0 ^(π/2) ln(sinu)du  ∫_0 ^(π/2) ln(sinx)dx=−(π/2)ln2         ∴∵  Q = ∫_0 ^1 ((arcsinx)/x)dx = (π/2)ln2..
Q=01arcsinxxdxIBPQ=01lnx1x2dxx=sinudx=cosuduQ=0π2ln(sinu)cosucosuduQ=0π2ln(sinu)du0π2ln(sinx)dx=π2ln2∴∵Q=01arcsinxxdx=π2ln2..
Commented by amin96 last updated on 13/Oct/21
∫_0 ^(π/2) ln(sin(x))dx=^(????) −(π/2)ln2
0π2ln(sin(x))dx=????π2ln2
Commented by puissant last updated on 13/Oct/21
yessssssss sir..
yesssssssssir..

Leave a Reply

Your email address will not be published. Required fields are marked *