0-1-cot-1-1-x-x-2-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 17203 by Arnab Maiti last updated on 02/Jul/17 ∫01cot−1(1−x+x2)dx Commented by prakash jain last updated on 02/Jul/17 take1assecondfunction∫cot−1(1−x+x2)⋅1dxxcot−1(1−x+x2)+∫x(2x−1)(1−x+x2)2+1dx∫x(2x−1)(1−x+x2)2+1dx1+x2+x4−2x+2x2−2x3+1=x4−2x3+3x2−2x+2=x4+x2−2x3−2x+2x2+2=x2(x2+1)−2x(x2+1)+2(x2+1)=(x2+1)(x2−2x+2)2x2−xx2+1)(x2−2x+2)=Ax+Bx2+1+Cx+Dx2−2x+2x3:A+C=0⇒A=−Cx2:B−2A+D=2x:2A−2B+C=−11:2B+D=0⇒D=−2Bx2:B−2A+D=2⇒B−2A−2B=2⇒B=−2A−2x:2A−2B+C=12A+4A+4−A=1⇒A=−1A=−1,B=0,C=1,D=0xx2+1)(x2−2x+2)=−xx2+1+xx2−2x+2=(−xx2+1+xx2−2x+2)∫−xx2+1=−12∫2xx2+1=−12ln(x2+1)∫xx2−2x+2dx=12∫2x−2+2x2−2x+2dx=12∫2x−2x2−2x+2dx+∫1x2−2x+1+1dx12∫2x−2x2−2x+2dx=12ln(x2−2x+2)∫1x2−2x+1+1dx∫1(x−1)2+1dx=tan−1(x−1)∫cot−1(1−x+x2)dx=xcot−1(1−x+x2)+−12ln(x2+1)+12ln(x2−2x+2)+tan−1(x−1)] Commented by prakash jain last updated on 02/Jul/17 x=1cot−11−12ln2=π4−12ln2x=012ln2+tan−1−1=12ln2−π4∫01cot−1(1−x+x2)=π2−ln2 Commented by Arnab Maiti last updated on 02/Jul/17 Ans=Π2−ln2 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-148274Next Next post: Question-148278 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.