Menu Close

0-1-cot-1-1-x-x-2-dx-




Question Number 17203 by Arnab Maiti last updated on 02/Jul/17
∫_0 ^( 1) cot^(−1) (1−x+x^2 )dx
01cot1(1x+x2)dx
Commented by prakash jain last updated on 02/Jul/17
take 1 as second function  ∫cot^(−1) (1−x+x^2 )∙1dx  xcot^(−1) (1−x+x^2 )+∫((x(2x−1))/((1−x+x^2 )^2 +1))dx  ∫((x(2x−1))/((1−x+x^2 )^2 +1))dx  1+x^2 +x^4 −2x+2x^2 −2x^3 +1  =x^4 −2x^3 +3x^2 −2x+2  =x^4 +x^2 −2x^3 −2x+2x^2 +2  =x^2 (x^2 +1)−2x(x^2 +1)+2(x^2 +1)  =(x^2 +1)(x^2 −2x+2)  ((2x^2 −x)/(x^2 +1)(x^2 −2x+2)))=((Ax+B)/(x^2 +1))+((Cx+D)/(x^2 −2x+2))  x^3 :A+C=0⇒A=−C  x^2 :B−2A+D=2  x: 2A−2B+C=−1  1:2B+D=0⇒D=−2B  x^2 :B−2A+D=2  ⇒B−2A−2B=2⇒B=−2A−2  x: 2A−2B+C=1  2A+4A+4−A=1⇒A=−1  A=−1,B=0,C=1,D=0  (x/(x^2 +1)(x^2 −2x+2)))=((−x)/(x^2 +1))+(x/(x^2 −2x+2))  =(((−x)/(x^2 +1))+(x/(x^2 −2x+2)))  ∫((−x)/(x^2 +1))=−(1/2)∫((2x)/(x^2 +1))  =−(1/2)ln (x^2 +1)  ∫(x/(x^2 −2x+2))dx  =(1/2)∫((2x−2+2)/(x^2 −2x+2))dx  =(1/2)∫((2x−2)/(x^2 −2x+2))dx+∫(1/(x^2 −2x+1+1))dx  (1/2)∫((2x−2)/(x^2 −2x+2))dx=(1/2)ln (x^2 −2x+2)  ∫(1/(x^2 −2x+1+1))dx  ∫(1/((x−1)^2 +1))dx=tan^(−1) (x−1)  ∫cot^(−1) (1−x+x^2 )dx=  xcot^(−1) (1−x+x^2 )+  ((−1)/2)ln (x^2 +1)+  (1/2)ln (x^2 −2x+2)+tan^(−1) (x−1)]
take1assecondfunctioncot1(1x+x2)1dxxcot1(1x+x2)+x(2x1)(1x+x2)2+1dxx(2x1)(1x+x2)2+1dx1+x2+x42x+2x22x3+1=x42x3+3x22x+2=x4+x22x32x+2x2+2=x2(x2+1)2x(x2+1)+2(x2+1)=(x2+1)(x22x+2)2x2xx2+1)(x22x+2)=Ax+Bx2+1+Cx+Dx22x+2x3:A+C=0A=Cx2:B2A+D=2x:2A2B+C=11:2B+D=0D=2Bx2:B2A+D=2B2A2B=2B=2A2x:2A2B+C=12A+4A+4A=1A=1A=1,B=0,C=1,D=0xx2+1)(x22x+2)=xx2+1+xx22x+2=(xx2+1+xx22x+2)xx2+1=122xx2+1=12ln(x2+1)xx22x+2dx=122x2+2x22x+2dx=122x2x22x+2dx+1x22x+1+1dx122x2x22x+2dx=12ln(x22x+2)1x22x+1+1dx1(x1)2+1dx=tan1(x1)cot1(1x+x2)dx=xcot1(1x+x2)+12ln(x2+1)+12ln(x22x+2)+tan1(x1)]
Commented by prakash jain last updated on 02/Jul/17
x=1  cot^(−1) 1−(1/2)ln 2=(π/4)−(1/2)ln 2  x=0  (1/2)ln 2+tan^(−1) −1=(1/2)ln 2−(π/4)  ∫_0 ^1 cot^(−1) (1−x+x^2 )=(π/2)−ln 2
x=1cot1112ln2=π412ln2x=012ln2+tan11=12ln2π401cot1(1x+x2)=π2ln2
Commented by Arnab Maiti last updated on 02/Jul/17
Ans=(Π/2)−ln 2
Ans=Π2ln2

Leave a Reply

Your email address will not be published. Required fields are marked *