Menu Close

0-1-dx-ln-x-by-Gamma-function-




Question Number 97057 by bemath last updated on 06/Jun/20
∫_0 ^1  (dx/( (√(−ln(x))))) ? [ by Gamma function ]
10dxln(x)?[byGammafunction]
Answered by Sourav mridha last updated on 06/Jun/20
let ln(x)=−k..  =∫_0 ^∞ e^(−k) .k^(−(1/2)) dk  =𝚪((1/2))=(√π).  it is need not to tell −′′by Gamma   function′′.
\boldsymbollet\boldsymbolln(\boldsymbolx)=\boldsymbolk..=0\boldsymbole\boldsymbolk.\boldsymbolk12\boldsymboldk=\boldsymbolΓ(12)=π.\boldsymbolit\boldsymbolis\boldsymbolneed\boldsymbolnot\boldsymbolto\boldsymboltell\boldsymbolby\boldsymbolGamma\boldsymbolfunction.
Commented by bemath last updated on 06/Jun/20
yes. thanks
yes.thanks
Answered by mathmax by abdo last updated on 06/Jun/20
I =∫_0 ^1  (dx/( (√(−lnx)))) changement (√(−lnx))=t give −lnx =t^2  ⇒lnx =−t^2  ⇒x =e^(−t^2 )   I =−∫_0 ^∞    ((−2t e^(−t^2 ) )/t) dt =2 ∫_0 ^∞  e^(−t^2 ) dt =2×((√π)/2) =(√π)
I=01dxlnxchangementlnx=tgivelnx=t2lnx=t2x=et2I=02tet2tdt=20et2dt=2×π2=π

Leave a Reply

Your email address will not be published. Required fields are marked *