Menu Close

0-1-e-x-2-dx-




Question Number 100047 by Ar Brandon last updated on 24/Jun/20
∫_0 ^1 e^(−x^2 ) dx
01ex2dx
Answered by smridha last updated on 24/Jun/20
=((√𝛑)/2)erf(1)
=π2erf(1)
Commented by Ar Brandon last updated on 24/Jun/20
Thanks, but how do we arrive there ? Or is it just a theory ?
Commented by smridha last updated on 24/Jun/20
yeah you can say that  the fact is..  erf(x)=(2/( (√𝛑)))∫_0 ^x e^(−t^2 ) dt  well I have defferent way wait  I post it...
yeahyoucansaythatthefactis..erf(x)=2π0xet2dtwellIhavedefferentwaywaitIpostit
Answered by smridha last updated on 24/Jun/20
=∫_0 ^1 Σ_(n=0) ^∞ (((−1)^n x^(2n) )/(n!))dx  =1.Σ_(n=0) ^∞ (((−1)^n )/(n!(2n+1)))  =Σ_(n=0) ^∞ ((1/2)/((n+(1/2)))).(((−1)^n )/(n!))  =Σ_(n=0 ) ^∞ ((((1/2))_n )/(((3/2))_n )).(((−1)^n )/(n!))  =M((1/2),(3/2),−1)or _1 F_1 ((1/2);(3/2);−1)  this is called confluent hypergeometric  f^n .  note:(a)=(((a)_n )/((a+1)_n ))(a+n)[pochhammer symbol]
=01n=0(1)nx2nn!dx=1.n=0(1)nn!(2n+1)=n=012(n+12).(1)nn!=n=0(12)n(32)n.(1)nn!=M(12,32,1)or1F1(12;32;1)thisiscalledconfluenthypergeometricfn.note:(a)=(a)n(a+1)n(a+n)[pochhammersymbol]
Commented by Ar Brandon last updated on 24/Jun/20
Thanks so very much��

Leave a Reply

Your email address will not be published. Required fields are marked *