Menu Close

0-1-Li-2-x-log-1-x-dx-Li-2-x-polylogaritm-function-




Question Number 152019 by mathdanisur last updated on 25/Aug/21
Ω =∫_( 0) ^( 1)  Li_2 (x) log(1+x) dx = ?  Li_2 (x)−polylogaritm function
Ω=10Li2(x)log(1+x)dx=?Li2(x)polylogaritmfunction
Answered by mnjuly1970 last updated on 25/Aug/21
Answered by Olaf_Thorendsen last updated on 25/Aug/21
Ω = ∫_0 ^1 Li_2 (x)log(1+x) dx  Li_2 (x) = Σ_(k=1) ^∞ (x^k /k^2 )  ∫Li_2 (x)dx = Σ_(k=1) ^∞ (x^(k+1) /(k^2 (k+1)))  Ω = [Σ_(k=1) ^∞ (x^(k+1) /(k^2 (k+1))).log(1+x)]_0 ^1 −∫_0 ^1 Σ_(k=1) ^∞ (x^(k+1) /(k^2 (k+1))).(dx/(1+x))  Ω = log2Σ_(k=1) ^∞ (1/(k^2 (k+1)))−Σ_(k=1) ^∞ (1/(k^2 (k+1)))∫_0 ^1 (x^(k+1) /(1+x)) dx  ∫_0 ^1 (x^(k+1) /(1+x)) dx = −∫_0 ^1 ((1−x^(k+1) )/(1+x)) dx+∫_0 ^1 (dx/(1+x))  ∫_0 ^1 (x^(k+1) /(1+x)) dx = −∫_0 ^1 Σ_(p=0) ^k x^p  dx+∫_0 ^1 (dx/(1+x))  ∫_0 ^1 (x^(k+1) /(1+x)) dx = [−Σ_(p=0) ^k (x^(p+1) /(p+1)) dx+log(1+x)]_0 ^1   ∫_0 ^1 (x^(k+1) /(1+x)) dx = −Σ_(p=0) ^k (1/(p+1)) dx+log2 = log2−H_(k+1)   Ω = log2Σ_(k=1) ^∞ (1/(k^2 (k+1)))−Σ_(k=1) ^∞ ((log2−H_(k+1) )/(k^2 (k+1)))  Ω = Σ_(k=1) ^∞ (H_(k+1) /(k^2 (k+1)))  ...break... I come back
Ω=01Li2(x)log(1+x)dxLi2(x)=k=1xkk2Li2(x)dx=k=1xk+1k2(k+1)Ω=[k=1xk+1k2(k+1).log(1+x)]0101k=1xk+1k2(k+1).dx1+xΩ=log2k=11k2(k+1)k=11k2(k+1)01xk+11+xdx01xk+11+xdx=011xk+11+xdx+01dx1+x01xk+11+xdx=01kp=0xpdx+01dx1+x01xk+11+xdx=[kp=0xp+1p+1dx+log(1+x)]0101xk+11+xdx=kp=01p+1dx+log2=log2Hk+1Ω=log2k=11k2(k+1)k=1log2Hk+1k2(k+1)Ω=k=1Hk+1k2(k+1)breakIcomeback
Commented by mathdanisur last updated on 25/Aug/21
Alot cool Ser, thank you, please
AlotcoolSer,thankyou,please
Commented by mathdanisur last updated on 26/Aug/21
Answer Ser
AnswerSer
Answered by Kamel last updated on 25/Aug/21
Commented by mathdanisur last updated on 26/Aug/21
The answer is wrong
Theansweriswrong
Answered by qaz last updated on 25/Aug/21
Ω=[(1+x)ln(1+x)−(1+x)]Li_2 (x)∣_0 ^1 +∫_0 ^1 (1+x)[ln(1+x)−1]((ln(1−x))/x)dx  =(π^2 /3)ln2−(π^2 /3)+∫_0 ^1 (((ln(1+x)ln(1−x))/x)−((ln(1−x))/x)+ln(1+x)ln(1−x)−ln(1−x))dx  =(π^2 /3)ln2−(π^2 /3)−(5/8)ζ(3)+(π^2 /6)+(−(π^2 /6)+ln^2 2−2ln2+2)+1  =(π^2 /3)ln2−(π^2 /3)−(5/8)ζ(3)+ln^2 2−2ln2+3
Ω=[(1+x)ln(1+x)(1+x)]Li2(x)01+01(1+x)[ln(1+x)1]ln(1x)xdx=π23ln2π23+01(ln(1+x)ln(1x)xln(1x)x+ln(1+x)ln(1x)ln(1x))dx=π23ln2π2358ζ(3)+π26+(π26+ln222ln2+2)+1=π23ln2π2358ζ(3)+ln222ln2+3
Commented by mathdanisur last updated on 26/Aug/21
The answer is wrong Ser
TheansweriswrongSer

Leave a Reply

Your email address will not be published. Required fields are marked *