Question Number 152019 by mathdanisur last updated on 25/Aug/21

Answered by mnjuly1970 last updated on 25/Aug/21

Answered by Olaf_Thorendsen last updated on 25/Aug/21
![Ω = ∫_0 ^1 Li_2 (x)log(1+x) dx Li_2 (x) = Σ_(k=1) ^∞ (x^k /k^2 ) ∫Li_2 (x)dx = Σ_(k=1) ^∞ (x^(k+1) /(k^2 (k+1))) Ω = [Σ_(k=1) ^∞ (x^(k+1) /(k^2 (k+1))).log(1+x)]_0 ^1 −∫_0 ^1 Σ_(k=1) ^∞ (x^(k+1) /(k^2 (k+1))).(dx/(1+x)) Ω = log2Σ_(k=1) ^∞ (1/(k^2 (k+1)))−Σ_(k=1) ^∞ (1/(k^2 (k+1)))∫_0 ^1 (x^(k+1) /(1+x)) dx ∫_0 ^1 (x^(k+1) /(1+x)) dx = −∫_0 ^1 ((1−x^(k+1) )/(1+x)) dx+∫_0 ^1 (dx/(1+x)) ∫_0 ^1 (x^(k+1) /(1+x)) dx = −∫_0 ^1 Σ_(p=0) ^k x^p dx+∫_0 ^1 (dx/(1+x)) ∫_0 ^1 (x^(k+1) /(1+x)) dx = [−Σ_(p=0) ^k (x^(p+1) /(p+1)) dx+log(1+x)]_0 ^1 ∫_0 ^1 (x^(k+1) /(1+x)) dx = −Σ_(p=0) ^k (1/(p+1)) dx+log2 = log2−H_(k+1) Ω = log2Σ_(k=1) ^∞ (1/(k^2 (k+1)))−Σ_(k=1) ^∞ ((log2−H_(k+1) )/(k^2 (k+1))) Ω = Σ_(k=1) ^∞ (H_(k+1) /(k^2 (k+1))) ...break... I come back](https://www.tinkutara.com/question/Q152048.png)
Commented by mathdanisur last updated on 25/Aug/21

Commented by mathdanisur last updated on 26/Aug/21

Answered by Kamel last updated on 25/Aug/21

Commented by mathdanisur last updated on 26/Aug/21

Answered by qaz last updated on 25/Aug/21
![Ω=[(1+x)ln(1+x)−(1+x)]Li_2 (x)∣_0 ^1 +∫_0 ^1 (1+x)[ln(1+x)−1]((ln(1−x))/x)dx =(π^2 /3)ln2−(π^2 /3)+∫_0 ^1 (((ln(1+x)ln(1−x))/x)−((ln(1−x))/x)+ln(1+x)ln(1−x)−ln(1−x))dx =(π^2 /3)ln2−(π^2 /3)−(5/8)ζ(3)+(π^2 /6)+(−(π^2 /6)+ln^2 2−2ln2+2)+1 =(π^2 /3)ln2−(π^2 /3)−(5/8)ζ(3)+ln^2 2−2ln2+3](https://www.tinkutara.com/question/Q152067.png)
Commented by mathdanisur last updated on 26/Aug/21
