Menu Close

0-1-ln-1-x-x-2-1-dx-




Question Number 86646 by Ar Brandon last updated on 30/Mar/20
∫_0 ^1 ((ln(1+x))/(x^2 +1))dx
01ln(1+x)x2+1dx
Commented by mathmax by abdo last updated on 30/Mar/20
I=∫_0 ^1  ((ln(1+x))/(1+x^2 ))dx cha7gement x=tant give  I =∫_0 ^(π/4)  ((ln(1+tan(t)))/(1+tan^2 t))(1+tan^2 t)dt  =∫_0 ^(π/4) ln(1+tant)dt   =_(t=(π/4)−u)  ∫_0 ^(π/4) ln(1+tan((π/4)−u))du  =∫_0 ^(π/4) ln(1+((1−tanu)/(1+tanu)))du =∫_0 ^(π/4) ln((2/(1+tanu)))du  =(π/4)ln(2)−∫_0 ^(π/4)  ln(1+tanu)du ⇒  2I =(π/4)ln(2) ⇒I =(π/8)ln(2)
I=01ln(1+x)1+x2dxcha7gementx=tantgiveI=0π4ln(1+tan(t))1+tan2t(1+tan2t)dt=0π4ln(1+tant)dt=t=π4u0π4ln(1+tan(π4u))du=0π4ln(1+1tanu1+tanu)du=0π4ln(21+tanu)du=π4ln(2)0π4ln(1+tanu)du2I=π4ln(2)I=π8ln(2)
Commented by Ar Brandon last updated on 30/Mar/20
cool!!
cool!!

Leave a Reply

Your email address will not be published. Required fields are marked *