Menu Close

0-1-ln-1-x-x-2-x-3-x-n-x-dx-




Question Number 130781 by EDWIN88 last updated on 28/Jan/21
∫_0 ^( 1)  ((ln (1+x+x^2 +x^3 +...+x^n ))/x) dx?
01ln(1+x+x2+x3++xn)xdx?
Answered by mathmax by abdo last updated on 29/Jan/21
A_n =∫_0 ^1  ((ln(1+x+x^2 +....+x^n ))/x)dx ⇒  A_n =∫_0 ^1 ((ln(((1−x^(n+1) )/(1−x))))/x)dx =∫_0 ^1  ((ln(1−x^(n+1) ))/x)dx−∫_0 ^1  ((ln(1−x))/x)dx  ln^′ (1−x)=−(1/(1−x))=−Σ_(n=0) ^∞  x^n  ⇒ln(1−x)=−Σ_(n=0) ^∞  (x^(n+1) /(n+1)) +c(c=0)  =−Σ_(n=1) ^∞  (x^n /n) ⇒∫_0 ^1  ((ln(1−x))/x)dx =−Σ_(n=1) ^∞  (1/n)∫_0 ^1  x^(n−1) dx=−Σ_(n=1) ^∞  (1/n^2 )  =−(π^2 /6) and  ln(1−x^(n+1) )=−Σ_(p=1) ^∞  (((x^(n+1) )^p )/p) =−Σ_(p=1) ^∞ (x^((n+1)p) /p) ⇒  ∫_0 ^1  ((ln(1−x^(n+1) ))/x)dx =−Σ_(p=1) ^∞  (1/p) ∫_0 ^1  x^((n+1)p−1) dx  =−Σ_(p=1) ^∞ (1/(p(n+1)p)) =−Σ_(p=1) ^∞ (1/((n+1)p^2 )) =−(π^2 /(6(n+1))) ⇒  A_n =−(1/(n+1)).(π^2 /6)+(π^2 /6) =(π^2 /6)(1−(1/(n+1))) =((nπ^2 )/(6(n+1)))
An=01ln(1+x+x2+.+xn)xdxAn=01ln(1xn+11x)xdx=01ln(1xn+1)xdx01ln(1x)xdxln(1x)=11x=n=0xnln(1x)=n=0xn+1n+1+c(c=0)=n=1xnn01ln(1x)xdx=n=11n01xn1dx=n=11n2=π26andln(1xn+1)=p=1(xn+1)pp=p=1x(n+1)pp01ln(1xn+1)xdx=p=11p01x(n+1)p1dx=p=11p(n+1)p=p=11(n+1)p2=π26(n+1)An=1n+1.π26+π26=π26(11n+1)=nπ26(n+1)
Commented by mathmax by abdo last updated on 29/Jan/21
remark     lim_(n→+∞)  A_n =(π^2 /6)
remarklimn+An=π26
Commented by Lordose last updated on 29/Jan/21
Very nice sir
Verynicesir
Answered by mnjuly1970 last updated on 29/Jan/21
 φ_n =∫_0 ^( 1) (1/x)ln(1−x^(n+1) )+li_2 (1)        =−Σ_(m≥1) (1/m)∫_0 ^( 1) (x^(nm+m) /x)dx+(π^2 /6)       =−Σ_(m≥1) (1/(m^2 (n+1)))+(π^2 /6)       =−(1/(n+1)) ζ(2)+(π^2 /6)          φ_n =−(π^2 /(6(n+1)))+(π^2 /6)      if   n →∞  then   φ_n →(π^2 /6)
ϕn=011xln(1xn+1)+li2(1)=m11m01xnm+mxdx+π26=m11m2(n+1)+π26=1n+1ζ(2)+π26ϕn=π26(n+1)+π26ifnthenϕnπ26
Answered by Dwaipayan Shikari last updated on 29/Jan/21
∫_0 ^1 ((log(1+x+x+x^3 +..+x^n ))/x)dx  =∫_0 ^1 ((log(1−x^(n+1) ))/x)−((log(1−x))/x)dx  =−Σ_(k=1) ^∞ ∫_0 ^1 (x^((n+1)k−1) /k)+Σ_(k=1) ^∞ ∫_0 ^1 (x^(k−1) /k)dx  =−Σ_(k=1) ^∞ (1/((n+1)k^2 ))+(π^2 /6)=(π^2 /6)((n/(n+1)))
01log(1+x+x+x3+..+xn)xdx=01log(1xn+1)xlog(1x)xdx=k=101x(n+1)k1k+k=101xk1kdx=k=11(n+1)k2+π26=π26(nn+1)

Leave a Reply

Your email address will not be published. Required fields are marked *