0-1-ln-1-x-x-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 169873 by sciencestudent last updated on 11/May/22 ∫10ln(1+x)xdx=? Answered by ArielVyny last updated on 11/May/22 ∑n⩾0(−1)nxn=11+x∑n⩾0(−1)nxn+1n+1=ln(1+x)∑n⩾0(−1)n∫01xnn+1=∫01ln(1+x)xdx∑n⩾0(−1)n1(n+1)2=∫01ln(1+x)x=π212 Answered by Mathspace last updated on 11/May/22 ddxln(1+x)=11+x=∑n=0∞(−1)nxnwith∣x∣<1⇒ln(1+x)=∑n=0∞(−1)nn+1xn+1+c(c=0)=∑n=1∞(−1)n−1nxn⇒∫01ln(1+x)xdx=∫01∑n=1∞(−1)n−1nxn−1=∑n=1∞(−1)n−1n∫01xn−1dx=∑n=1∞(−1)n−1n2=−δ(2)δ(x)=∑n=1∞(−1)nnx=(21−x−1)ξ(x)⇒δ(2)=(12−1)ξ(2)=−12π26=−π212⇒∫01ln(1+x)xdx=π212 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: tdt-1-t-3-1-t-3-1-3-Next Next post: Question-169878 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.