Menu Close

0-1-ln-1-x-x-dx-




Question Number 169873 by sciencestudent last updated on 11/May/22
∫_0 ^1 ((ln(1+x))/x)dx=?
10ln(1+x)xdx=?
Answered by ArielVyny last updated on 11/May/22
Σ_(n≥0) (−1)^n x^n =(1/(1+x))  Σ_(n≥0) (−1)^n (x^(n+1) /(n+1))=ln(1+x)  Σ_(n≥0) (−1)^n ∫_0 ^1 (x^n /(n+1))=∫_0 ^1 ((ln(1+x))/x)dx  Σ_(n≥0) (−1)^n (1/((n+1)^2 ))=∫_0 ^1 ((ln(1+x))/x)=(π^2 /(12))
n0(1)nxn=11+xn0(1)nxn+1n+1=ln(1+x)n0(1)n01xnn+1=01ln(1+x)xdxn0(1)n1(n+1)2=01ln(1+x)x=π212
Answered by Mathspace last updated on 11/May/22
(d/dx)ln(1+x)=(1/(1+x))=Σ_(n=0) ^∞ (−1)^n x^n   with∣x∣<1⇒ln(1+x)=Σ_(n=0) ^∞ (((−1)^n )/(n+1))x^(n+1) +c(c=0)  =Σ_(n=1) ^∞ (((−1)^(n−1) )/n)x^n  ⇒  ∫_0 ^1 ((ln(1+x))/x)dx=∫_0 ^1 Σ_(n=1) ^∞ (((−1)^(n−1) )/n)x^(n−1)   =Σ_(n=1) ^∞ (((−1)^(n−1) )/n)∫_0 ^1 x^(n−1) dx  =Σ_(n=1) ^∞ (((−1)^(n−1) )/n^2 )=−δ(2)  δ(x)=Σ_(n=1) ^∞ (((−1)^n )/n^x )  =(2^(1−x) −1)ξ(x) ⇒  δ(2)=((1/2)−1)ξ(2)=−(1/2)(π^2 /6)  =−(π^2 /(12)) ⇒∫_0 ^1 ((ln(1+x))/x)dx=(π^2 /(12))
ddxln(1+x)=11+x=n=0(1)nxnwithx∣<1ln(1+x)=n=0(1)nn+1xn+1+c(c=0)=n=1(1)n1nxn01ln(1+x)xdx=01n=1(1)n1nxn1=n=1(1)n1n01xn1dx=n=1(1)n1n2=δ(2)δ(x)=n=1(1)nnx=(21x1)ξ(x)δ(2)=(121)ξ(2)=12π26=π21201ln(1+x)xdx=π212

Leave a Reply

Your email address will not be published. Required fields are marked *