Menu Close

0-1-ln-2-1-x-1-x-dx-




Question Number 184098 by paul2222 last updated on 02/Jan/23
∫_0 ^1 ((ln^2 (1−x))/(1−x))dx
$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\boldsymbol{\mathrm{ln}}^{\mathrm{2}} \left(\mathrm{1}−\boldsymbol{\mathrm{x}}\right)}{\mathrm{1}−\boldsymbol{\mathrm{x}}}\boldsymbol{\mathrm{dx}} \\ $$
Commented by paul2222 last updated on 02/Jan/23
let 1−x=u  ∫_0 ^1 ((ln^2 (u))/u)du  let ln(u)=−k du=−e^(−k) dk  ∫_0 ^∞ (k^2 /e^(−k) )e^(−k) dk=∫_0 ^∞ k^2 dk  (the integral diverges)
$$\boldsymbol{\mathrm{let}}\:\mathrm{1}−\boldsymbol{\mathrm{x}}=\boldsymbol{\mathrm{u}} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\boldsymbol{\mathrm{ln}}^{\mathrm{2}} \left(\boldsymbol{\mathrm{u}}\right)}{\boldsymbol{\mathrm{u}}}\boldsymbol{\mathrm{du}} \\ $$$$\boldsymbol{\mathrm{let}}\:\boldsymbol{\mathrm{ln}}\left(\boldsymbol{\mathrm{u}}\right)=−\boldsymbol{\mathrm{k}}\:\boldsymbol{\mathrm{du}}=−\boldsymbol{\mathrm{e}}^{−\boldsymbol{\mathrm{k}}} \boldsymbol{\mathrm{dk}} \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{\boldsymbol{\mathrm{k}}^{\mathrm{2}} }{\boldsymbol{\mathrm{e}}^{−\boldsymbol{\mathrm{k}}} }\boldsymbol{\mathrm{e}}^{−\boldsymbol{\mathrm{k}}} \boldsymbol{\mathrm{dk}}=\int_{\mathrm{0}} ^{\infty} \boldsymbol{\mathrm{k}}^{\mathrm{2}} \boldsymbol{\mathrm{dk}} \\ $$$$\left(\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{integral}}\:\boldsymbol{\mathrm{diverges}}\right) \\ $$
Commented by mokys last updated on 03/Jan/23
e^y  = 1 − x → e^y dy = −dx     x = 1 → y = −∞   ,  x = 0 → y = 0     ∫_(−∞) ^( 0)  y^2  dy so is diverge
$${e}^{{y}} \:=\:\mathrm{1}\:−\:{x}\:\rightarrow\:{e}^{{y}} {dy}\:=\:−{dx} \\ $$$$ \\ $$$$\:{x}\:=\:\mathrm{1}\:\rightarrow\:{y}\:=\:−\infty\:\:\:,\:\:{x}\:=\:\mathrm{0}\:\rightarrow\:{y}\:=\:\mathrm{0} \\ $$$$ \\ $$$$\:\int_{−\infty} ^{\:\mathrm{0}} \:{y}^{\mathrm{2}} \:{dy}\:{so}\:{is}\:{diverge}\: \\ $$
Answered by Ml last updated on 03/Jan/23
∫_0 ^1 (((ln(1−x))^2 )/((1−x)))dx   { ((u=ln(1−x))),((du=−(1/((1−x)))dx)) :} , dx=−(1−x)du  ∫_0 ^1 ((u^2  (−(1−x))du)/((1−x)))=−∫_0 ^1 u^2 du=−(1/3)u^3   ⇒ −(1/3)(ln(1−x))^3 ∣_0 ^1 =∞
$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\left(\mathrm{ln}\left(\mathrm{1}−\mathrm{x}\right)\right)^{\mathrm{2}} }{\left(\mathrm{1}−\mathrm{x}\right)}\mathrm{dx} \\ $$$$\begin{cases}{\mathrm{u}=\mathrm{ln}\left(\mathrm{1}−\mathrm{x}\right)}\\{\mathrm{du}=−\frac{\mathrm{1}}{\left(\mathrm{1}−\mathrm{x}\right)}\mathrm{dx}}\end{cases}\:,\:\mathrm{dx}=−\left(\mathrm{1}−\mathrm{x}\right)\mathrm{du} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{u}^{\mathrm{2}} \:\left(−\left(\mathrm{1}−\mathrm{x}\right)\right)\mathrm{du}}{\left(\mathrm{1}−\mathrm{x}\right)}=−\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{u}^{\mathrm{2}} \mathrm{du}=−\frac{\mathrm{1}}{\mathrm{3}}\mathrm{u}^{\mathrm{3}} \\ $$$$\Rightarrow\:−\frac{\mathrm{1}}{\mathrm{3}}\left(\mathrm{ln}\left(\mathrm{1}−\mathrm{x}\right)\right)^{\mathrm{3}} \mid_{\mathrm{0}} ^{\mathrm{1}} =\infty \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *