Menu Close

0-1-ln-2-1-x-1-x-dx-




Question Number 184098 by paul2222 last updated on 02/Jan/23
∫_0 ^1 ((ln^2 (1−x))/(1−x))dx
01ln2(1x)1xdx
Commented by paul2222 last updated on 02/Jan/23
let 1−x=u  ∫_0 ^1 ((ln^2 (u))/u)du  let ln(u)=−k du=−e^(−k) dk  ∫_0 ^∞ (k^2 /e^(−k) )e^(−k) dk=∫_0 ^∞ k^2 dk  (the integral diverges)
let1x=u01ln2(u)uduletln(u)=kdu=ekdk0k2ekekdk=0k2dk(theintegraldiverges)
Commented by mokys last updated on 03/Jan/23
e^y  = 1 − x → e^y dy = −dx     x = 1 → y = −∞   ,  x = 0 → y = 0     ∫_(−∞) ^( 0)  y^2  dy so is diverge
ey=1xeydy=dxx=1y=,x=0y=00y2dysoisdiverge
Answered by Ml last updated on 03/Jan/23
∫_0 ^1 (((ln(1−x))^2 )/((1−x)))dx   { ((u=ln(1−x))),((du=−(1/((1−x)))dx)) :} , dx=−(1−x)du  ∫_0 ^1 ((u^2  (−(1−x))du)/((1−x)))=−∫_0 ^1 u^2 du=−(1/3)u^3   ⇒ −(1/3)(ln(1−x))^3 ∣_0 ^1 =∞
01(ln(1x))2(1x)dx{u=ln(1x)du=1(1x)dx,dx=(1x)du01u2((1x))du(1x)=01u2du=13u313(ln(1x))301=

Leave a Reply

Your email address will not be published. Required fields are marked *