Menu Close

0-1-ln-2-1-x-ln-x-x-dx-




Question Number 160252 by mnjuly1970 last updated on 26/Nov/21
      ∫_0 ^( 1) (( ln^( 2) (1−x )ln(x))/x)dx=?
01ln2(1x)ln(x)xdx=?
Answered by TheSupreme last updated on 26/Nov/21
I=  ∫_0 ^1 ln^2 (1−x)((ln(x))/x)dx=(1/2)ln^2 (1−x)ln^2 (x)−∫_0 ^1 −((ln(1−x))/(1−x))ln^2 (x)dx=  t=1−x →x=1−t→dx=−dt  =(1/2)ln^2 (1−x)ln^2 (x)−∫_0 ^1 ((ln(t))/t)ln^2 (1−t)dt  =(1/2)ln^2 (1−x)ln^2 (x)−∫_0 ^1 ((ln(t)ln^2 (1−t))/t)dt  2I=(1/2)ln^2 (1−x)ln^2 (x)]_0 ^1   ∫_0 ^1 ln^2 (1−x)((ln(x))/x)=(1/4)ln^2 (1−x) ln^2 (x)]_0 ^1   lim_(x→0)  (1/4)ln^2 (1−x)ln^2 (x)=(1/4)x^2 ln^2 (x)=0  I=0
I=01ln2(1x)ln(x)xdx=12ln2(1x)ln2(x)01ln(1x)1xln2(x)dx=t=1xx=1tdx=dt=12ln2(1x)ln2(x)01ln(t)tln2(1t)dt=12ln2(1x)ln2(x)01ln(t)ln2(1t)tdt2I=12ln2(1x)ln2(x)]0101ln2(1x)ln(x)x=14ln2(1x)ln2(x)]01limx014ln2(1x)ln2(x)=14x2ln2(x)=0I=0
Commented by mr W last updated on 27/Nov/21
please recheck sir!  i don′t know how to solve this definite  integral, but i′m sure it must be  negative and therefore can not be   zero.  0≤x≤1  ln^2  (1−x)>0  ln (x)<0  x>0  ⇒((ln^2  (1−x)ln (x))/x)<0  ⇒∫_0 ^1 ((ln^2  (1−x)ln (x))/x)dx<0  ⇒∫_0 ^1 ((ln^2  (1−x)ln (x))/x)dx≠0
pleaserechecksir!idontknowhowtosolvethisdefiniteintegral,butimsureitmustbenegativeandthereforecannotbezero.0x1ln2(1x)>0ln(x)<0x>0ln2(1x)ln(x)x<001ln2(1x)ln(x)xdx<001ln2(1x)ln(x)xdx0
Commented by MJS_new last updated on 27/Nov/21
∫_0 ^1  ((ln^2  (1−x) ln x)/x)dx=       [by parts]  =[(1/2)ln^2  x ln^2  (1−x)]_0 ^1 +∫_0 ^1  ((ln^2  x ln (1−x))/(1−x))dx=       [t=1−x → dx=−dt]  =[(1/2)ln^2  x ln^2  (1−x)]_0 ^1 −∫_1 ^0  ((ln^2  (1−t) ln t)/t)dt=  =[(1/2)ln^2  x ln^2  (1−x)]_0 ^1 +∫_0 ^1  ((ln^2  (1−t) ln t)/t)dt  so we have  I=[(1/2)ln^2  x ln^2  (1−x)]_0 ^1 +I  we cannot solve it this way (or am I too tired  to understand anything? it′s 2:30 a.m.)
10ln2(1x)lnxxdx=[byparts]=[12ln2xln2(1x)]01+10ln2xln(1x)1xdx=[t=1xdx=dt]=[12ln2xln2(1x)]0101ln2(1t)lnttdt==[12ln2xln2(1x)]01+10ln2(1t)lnttdtsowehaveI=[12ln2xln2(1x)]01+Iwecannotsolveitthisway(oramItootiredtounderstandanything?its2:30a.m.)
Commented by MJS_new last updated on 27/Nov/21
approximately  ∫_0 ^1  ((ln^2  (1−x) ln x)/x)dx≈−.541161616604
approximately10ln2(1x)lnxxdx.541161616604
Answered by mnjuly1970 last updated on 27/Nov/21

Leave a Reply

Your email address will not be published. Required fields are marked *