0-1-ln-2-x-Li-2-x-x-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 162177 by mnjuly1970 last updated on 27/Dec/21 Ο=β«01ln2(x).Li2(x)xdx=? Answered by Ar Brandon last updated on 27/Dec/21 Ο=β«01log2xLi2(x)xdx=ββn=11n2β«01xnlog2xxdx=ββn=11n2([13xnlog3x]01βn3β«01xnβ1log3xdx)=β13ββn=11nβ β3βΞ±3β£Ξ±=nβ1β«01xΞ±dx=β13ββn=11nβ β3βΞ±3β£Ξ±=nβ11Ξ±+1=β13ββn=11n(β6n4)=2ββn=11n5=2ΞΆ(5) Commented by mnjuly1970 last updated on 27/Dec/21 gratefulsirbrandon Commented by Ar Brandon last updated on 27/Dec/21 Mypleasure,Sir. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: prove-that-0-e-x-2-lim-n-0-dx-1-x-2-n-2-prove-that-1-pi-lim-n-1-3-5-2n-3-2-4-6-2n-2-n-wallis-formula-Next Next post: lim-x-x-x-2-3x-2-2022-x-x-2-5-2022-x-2022- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.