Menu Close

0-1-ln-2-x-Li-2-x-x-dx-




Question Number 162177 by mnjuly1970 last updated on 27/Dec/21
     𝛗 = ∫_0 ^( 1) (( ln^( 2) ( x ). Li_( 2)  (x ))/x^  ) dx =?
Ο•=∫01ln2(x).Li2(x)xdx=?
Answered by Ar Brandon last updated on 27/Dec/21
Ο†=∫_0 ^1 ((log^2 xLi_2 (x))/x)dx=Ξ£_(n=1) ^∞ (1/n^2 )∫_0 ^1 ((x^n log^2 x)/x)dx     =Ξ£_(n=1) ^∞ (1/n^2 )([(1/3)x^n log^3 x]_0 ^1 βˆ’(n/3)∫_0 ^1 x^(nβˆ’1) log^3 xdx)     =βˆ’(1/3)Ξ£_(n=1) ^∞ (1/n)βˆ™(βˆ‚^3 /βˆ‚Ξ±^3 )∣_(Ξ±=nβˆ’1) ∫_0 ^1 x^Ξ± dx     =βˆ’(1/3)Ξ£_(n=1) ^∞ (1/n)βˆ™(βˆ‚^3 /βˆ‚Ξ±^3 )∣_(Ξ±=nβˆ’1) (1/(Ξ±+1))     =βˆ’(1/3)Ξ£_(n=1) ^∞ (1/n)(((βˆ’6)/n^4 ))=2Ξ£_(n=1) ^∞ (1/n^5 )=2ΞΆ(5)
Ο•=∫01log2xLi2(x)xdx=βˆ‘βˆžn=11n2∫01xnlog2xxdx=βˆ‘βˆžn=11n2([13xnlog3x]01βˆ’n3∫01xnβˆ’1log3xdx)=βˆ’13βˆ‘βˆžn=11nβ‹…βˆ‚3βˆ‚Ξ±3∣α=nβˆ’1∫01xΞ±dx=βˆ’13βˆ‘βˆžn=11nβ‹…βˆ‚3βˆ‚Ξ±3∣α=nβˆ’11Ξ±+1=βˆ’13βˆ‘βˆžn=11n(βˆ’6n4)=2βˆ‘βˆžn=11n5=2ΞΆ(5)
Commented by mnjuly1970 last updated on 27/Dec/21
 grateful sir brandon
gratefulsirbrandon
Commented by Ar Brandon last updated on 27/Dec/21
My pleasure, Sir.
Mypleasure,Sir.

Leave a Reply

Your email address will not be published. Required fields are marked *