Menu Close

0-1-ln-x-1-x-2-1-dx-




Question Number 150993 by talminator2856791 last updated on 17/Aug/21
                          ∫_0 ^( 1)  ((ln(x+1))/(x^2 +1)) dx = ?
$$\: \\ $$$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\frac{\mathrm{ln}\left({x}+\mathrm{1}\right)}{{x}^{\mathrm{2}} +\mathrm{1}}\:{dx}\:=\:? \\ $$$$\: \\ $$$$\: \\ $$
Commented by puissant last updated on 17/Aug/21
Q150986
$${Q}\mathrm{150986} \\ $$
Answered by Ar Brandon last updated on 17/Aug/21
∫_0 ^1 ((ln(x+1))/(x^2 +1))dx=∫_0 ^(π/4) ln(1+tanϑ)dϑ  =∫_0 ^(π/4) ln(sinϑ+cosϑ)dϑ−∫_0 ^(π/4) ln(cosϑ)dϑ  =(1/2)(G−((πln2)/4))−((G/2)−((πln2)/4))=−((πln2)/8)+((πln2)/4)=((πln2)/8)
$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}\left({x}+\mathrm{1}\right)}{{x}^{\mathrm{2}} +\mathrm{1}}{dx}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \mathrm{ln}\left(\mathrm{1}+\mathrm{tan}\vartheta\right){d}\vartheta \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \mathrm{ln}\left(\mathrm{sin}\vartheta+\mathrm{cos}\vartheta\right){d}\vartheta−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \mathrm{ln}\left(\mathrm{cos}\vartheta\right){d}\vartheta \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left({G}−\frac{\pi\mathrm{ln2}}{\mathrm{4}}\right)−\left(\frac{{G}}{\mathrm{2}}−\frac{\pi\mathrm{ln2}}{\mathrm{4}}\right)=−\frac{\pi\mathrm{ln2}}{\mathrm{8}}+\frac{\pi\mathrm{ln2}}{\mathrm{4}}=\frac{\pi\mathrm{ln2}}{\mathrm{8}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *