0-1-ln-x-2-1-x-1-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 96925 by M±th+et+s last updated on 05/Jun/20 ∫01ln(x2+1)x+1dx Answered by mathmax by abdo last updated on 06/Jun/20 letf(α)=∫01ln(x2+α)x+1dxwehavef(1)=∫01ln(x2+1)x+1dx(α>0)f′(α)=∫01dx(x2+α)(x+1)letdecomposeF(x)=1(x+1)(x2+α)F(x)=ax+1+bx+cx2+αwehavea=11+αlimx→+∞xF(x)=0=a+b⇒b=−11+αF(0)=1α=a+cα⇒1=αa+c⇒c=1−αa=1−α1+α=11+α⇒F(x)=1(1+α)(x+1)+−11+αx+11+αx2+α=11+α{1x+1−xx2+α+1x2+α}⇒∫F(x)=11+α{ln∣x+1∣−12ln(x2+α)+∫dxx2+α}∫dxx2+α=x=αu∫αduα(1+u2)=1αarctan(xα)⇒∫01F(x)dx=11+α{[ln∣x+1x2+α∣]01+[1αarctan(xα)]01}=11+α{ln(21+α)−ln(1α)+1αarctan(1α)}⇒f(α)=∫ln(21+α)1+αdα+12∫lnα1+αdα+∫arctan(1α)(1+α)αdα+c…becontinued…. Answered by mathmax by abdo last updated on 07/Jun/20 lettakeatrywithserieswehaveI=∫01ln(1+x2)∑n=0∞(−1)nxndx=∑n=0∞(−1)n∫01xnln(1+x2)dxAn=∫01xnln(1+x2)dxwehaveln′(1+u)=11+u=∑p=0∞(−1)pup⇒ln(1+u)=∑p=0∞(−1)pup+1p+1+c(c=0)=∑p=1∞(−1)p−1upp⇒ln(1+x2)=∑p=1∞(−1)p−1px2p⇒An=∫01xn∑p=1∞(−1)p−1px2pdx=∑p=1∞(−1)p−1p∫01xn+2pdx=∑p=1∞(−1)p−1p(n+2p+1)⇒I=∑n=0∞(−1)n(∑p=1∞(−1)p−1p(n+2p+1))I=∑n⩾0∑p⩾1(−1)n+p−1p(n+2p+1) Commented by M±th+et+s last updated on 07/Jun/20 thankyousir Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-96920Next Next post: 69x-1-mod-31-solve-for-x- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.