Menu Close

0-1-ln-x-2-1-x-2-dx-pi-3-16-




Question Number 97369 by  M±th+et+s last updated on 07/Jun/20
∫_0 ^1 (((ln(x))^2 )/(1+x^2 ))dx=(π^3 /(16))
01(ln(x))21+x2dx=π316
Answered by maths mind last updated on 07/Jun/20
hello happy to comback   ∫_0 ^1 ((ln^2 (z))/(1+z^2 ))dz=∫_1 ^∞ ((ln^2 (z))/(1+z^2 ))dz  ⇒∫_0 ^1 ((ln^2 (z))/(1+z^2 ))dz=(1/2)∫_0 ^∞ ((ln^2 (z))/(1+z^2 ))dz  ∫_(−∞) ^(+∞) ((ln^2 (z))/(1+z^2 ))dz=2iπRes(((ln^2 (z))/(1+z^2 )),z=i)  ⇒∫_0 ^(+∞) ((ln^2 (z))/(1+z^2 ))dz+∫_(−∞) ^0 ((ln^2 (z))/(1+z^2 ))dz  =∫_0 ^(+∞) ((ln^2 (z)+ln^2 (z)−π^2 +2iπln(z))/(1+z^2 ))dz=2iπ.((ln^2 (i))/(2i))=π.−(π^2 /4)  ⇔2∫_0 ^(+∞) ((ln^2 (z))/(1+z^2 ))dz−π^2 ∫_0 ^(+∞) (dz/(1+z^2 ))=−(π^3 /4)  ⇒2∫_0 ^(+∞) ((ln^2 (z))/(1+z^2 ))dz−(π^3 /2)=−(π^3 /4)⇔∫_0 ^(+∞) ((ln^2 (z))/(1+z^2 ))=2∫_0 ^1 ((ln^2 (z))/(1+z^2 ))dz=(π^3 /8)  ⇒∫_0 ^1 ((ln^2 (z))/(1+z^2 ))dz=(π^3 /(16))
hellohappytocomback01ln2(z)1+z2dz=1ln2(z)1+z2dz01ln2(z)1+z2dz=120ln2(z)1+z2dz+ln2(z)1+z2dz=2iπRes(ln2(z)1+z2,z=i)0+ln2(z)1+z2dz+0ln2(z)1+z2dz=0+ln2(z)+ln2(z)π2+2iπln(z)1+z2dz=2iπ.ln2(i)2i=π.π2420+ln2(z)1+z2dzπ20+dz1+z2=π3420+ln2(z)1+z2dzπ32=π340+ln2(z)1+z2=201ln2(z)1+z2dz=π3801ln2(z)1+z2dz=π316
Commented by  M±th+et+s last updated on 07/Jun/20
how are you sir wellllllcomeeeee back  very happy to see you again
howareyousirwellllllcomeeeeebackveryhappytoseeyouagain
Commented by maths mind last updated on 07/Jun/20
im fin thanx i hop you too
imfinthanxihopyoutoo

Leave a Reply

Your email address will not be published. Required fields are marked *