Question Number 91931 by M±th+et+s last updated on 03/May/20
$$\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\Gamma\left({x}\right)\right)\:{dx} \\ $$
Commented by mathmax by abdo last updated on 04/May/20
$${we}\:{have}\:\Gamma\left({x}\right).\Gamma\left(\mathrm{1}−{x}\right)\:=\frac{\pi}{{sin}\left(\pi{x}\right)}\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\Gamma\left({x}\right)\right){dx}\:+\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\Gamma\left(\mathrm{1}−{x}\right)\right){dx}\:=\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\frac{\pi}{{sin}\left(\pi{x}\right)}\right){dx} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\Gamma\left(\mathrm{1}−{x}\right)\right){dx}\:=_{\mathrm{1}−{x}\:={t}} \:\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\Gamma\left({t}\right)\right){dt}\:\Rightarrow \\ $$$$\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\Gamma\left({x}\right)\right){dx}\:={ln}\left(\pi\right)−\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left({sin}\left(\pi{x}\right){dx}\right. \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left({sin}\left(\pi{x}\right)\right){dx}\:=_{\pi{x}\:={u}} \:\:\frac{\mathrm{1}}{\pi}\int_{\mathrm{0}} ^{\pi} \:{ln}\left({sinu}\right){du} \\ $$$$\int_{\mathrm{0}} ^{\pi} \:{ln}\left({sinu}\right){du}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({sinu}\right){du}\:+\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({sinu}\right){du}\:{but} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({sinu}\right){du}\:=_{{u}\:=\frac{\pi}{\mathrm{2}}−\alpha} \:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{ln}\left({cos}\alpha\right){d}\alpha\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\pi} \:{ln}\left({sinu}\right){du}\:=−\frac{\pi}{\mathrm{2}}{ln}\left(\mathrm{2}\right)−\frac{\pi}{\mathrm{2}}{ln}\left(\mathrm{2}\right)\:=−\pi{ln}\left(\mathrm{2}\right)\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:{ln}\left(\Gamma\left({x}\right)\right){dx}\:=\frac{{ln}\left(\pi\right)}{\mathrm{2}}\:+\frac{\pi}{\mathrm{2}}{ln}\left(\mathrm{2}\right) \\ $$
Commented by M±th+et+s last updated on 04/May/20
$${thank}\:{you}\:{sir} \\ $$
Commented by abdomathmax last updated on 04/May/20
$${you}\:{are}\:{welcome}. \\ $$