Menu Close

0-1-ln-x-dx-




Question Number 91931 by  M±th+et+s last updated on 03/May/20
∫_0 ^1 ln(Γ(x)) dx
$$\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\Gamma\left({x}\right)\right)\:{dx} \\ $$
Commented by mathmax by abdo last updated on 04/May/20
we have Γ(x).Γ(1−x) =(π/(sin(πx))) ⇒  ∫_0 ^1 ln(Γ(x))dx +∫_0 ^1 ln(Γ(1−x))dx =∫_0 ^1 ln((π/(sin(πx))))dx  ∫_0 ^1 ln(Γ(1−x))dx =_(1−x =t)   ∫_0 ^1 ln(Γ(t))dt ⇒  2∫_0 ^1 ln(Γ(x))dx =ln(π)−∫_0 ^1 ln(sin(πx)dx  ∫_0 ^1 ln(sin(πx))dx =_(πx =u)   (1/π)∫_0 ^π  ln(sinu)du  ∫_0 ^π  ln(sinu)du =∫_0 ^(π/2) ln(sinu)du + ∫_0 ^(π/2) ln(sinu)du but  ∫_0 ^(π/2) ln(sinu)du =_(u =(π/2)−α)   ∫_0 ^(π/2)  ln(cosα)dα ⇒  ∫_0 ^π  ln(sinu)du =−(π/2)ln(2)−(π/2)ln(2) =−πln(2) ⇒  ∫_0 ^1  ln(Γ(x))dx =((ln(π))/2) +(π/2)ln(2)
$${we}\:{have}\:\Gamma\left({x}\right).\Gamma\left(\mathrm{1}−{x}\right)\:=\frac{\pi}{{sin}\left(\pi{x}\right)}\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\Gamma\left({x}\right)\right){dx}\:+\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\Gamma\left(\mathrm{1}−{x}\right)\right){dx}\:=\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\frac{\pi}{{sin}\left(\pi{x}\right)}\right){dx} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\Gamma\left(\mathrm{1}−{x}\right)\right){dx}\:=_{\mathrm{1}−{x}\:={t}} \:\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\Gamma\left({t}\right)\right){dt}\:\Rightarrow \\ $$$$\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\Gamma\left({x}\right)\right){dx}\:={ln}\left(\pi\right)−\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left({sin}\left(\pi{x}\right){dx}\right. \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left({sin}\left(\pi{x}\right)\right){dx}\:=_{\pi{x}\:={u}} \:\:\frac{\mathrm{1}}{\pi}\int_{\mathrm{0}} ^{\pi} \:{ln}\left({sinu}\right){du} \\ $$$$\int_{\mathrm{0}} ^{\pi} \:{ln}\left({sinu}\right){du}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({sinu}\right){du}\:+\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({sinu}\right){du}\:{but} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({sinu}\right){du}\:=_{{u}\:=\frac{\pi}{\mathrm{2}}−\alpha} \:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{ln}\left({cos}\alpha\right){d}\alpha\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\pi} \:{ln}\left({sinu}\right){du}\:=−\frac{\pi}{\mathrm{2}}{ln}\left(\mathrm{2}\right)−\frac{\pi}{\mathrm{2}}{ln}\left(\mathrm{2}\right)\:=−\pi{ln}\left(\mathrm{2}\right)\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:{ln}\left(\Gamma\left({x}\right)\right){dx}\:=\frac{{ln}\left(\pi\right)}{\mathrm{2}}\:+\frac{\pi}{\mathrm{2}}{ln}\left(\mathrm{2}\right) \\ $$
Commented by  M±th+et+s last updated on 04/May/20
thank you sir
$${thank}\:{you}\:{sir} \\ $$
Commented by abdomathmax last updated on 04/May/20
you are welcome.
$${you}\:{are}\:{welcome}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *