Question Number 184470 by SANOGO last updated on 07/Jan/23
$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{lnx}}{\left(\mathrm{1}+{x}\right)^{\mathrm{2}} }{dx} \\ $$
Answered by mr W last updated on 07/Jan/23
$$=−\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{ln}\:\left({x}\right)\:{d}\left(\frac{\mathrm{1}}{\mathrm{1}+{x}}\right) \\ $$$$=−\left[\frac{\mathrm{ln}\:{x}}{\mathrm{1}+{x}}\right]_{\mathrm{0}} ^{\mathrm{1}} +\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{dx}}{{x}\left(\mathrm{1}+{x}\right)} \\ $$$$=−\left[\frac{\mathrm{ln}\:{x}}{\mathrm{1}+{x}}\right]_{\mathrm{0}} ^{\mathrm{1}} +\left[\mathrm{ln}\:\frac{{x}}{\mathrm{1}+{x}}\right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$=−\mathrm{ln}\:\mathrm{2} \\ $$$$ \\ $$$${hint}: \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}\:{x}}{\left(\mathrm{1}+{x}\right)^{\mathrm{2}} }{dx}=\underset{{a}\rightarrow\mathrm{0}} {\mathrm{lim}}\int_{{a}} ^{\mathrm{1}} \frac{\mathrm{ln}\:{x}}{\left(\mathrm{1}+{x}\right)^{\mathrm{2}} }{dx} \\ $$