0-1-log-1-x-7-1-x-7-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 162219 by mathlove last updated on 27/Dec/21 Ω=∫10log(1+x7)1+x7dx=? Answered by amin96 last updated on 27/Dec/21 x7=−tdtdx=−7x6=−7t67Ω=17∫−10ln(1−t)(1−t)t67dt=−17∑∞n=1Hn∫−10tn−67dt==−17∑∞n=1Hn[tn+17n+17]−10=−17∑∞n=1Hn(−1)n+17(n+17)==17∑∞n=1Hn(−1)n(n+17)=∑∞n=1(−1)nHn7n+1 Answered by mindispower last updated on 30/Dec/21 1+x7=∏6k=0(x−ak),ak=ei(1+2k)π7,k∈{0,6}11+x7=17∑6k=0−akx−ak.log(1+x7)=∑6j=0ln(x−aj)⇔17∑6j=0∑6k=0−ak∫01.ln(x−aj)x−akdx∫01ln(x−aj)x−akdx,y=x−ak=∫−ak1−akln(y+ak−aj)ydyy=(aj−ak)z⇔∫−akaj−ak1−akaj−akln((ak−aj)(1−z))zdz=ln(ak−aj)ln(1−1ak)+∫−akaj−ak1−akaj−akln(1−x)xdxLi2(z)=−∫0zln(1−t)tdtWeGetln(ak−aj)ln(1−1ak)+Li2(akak−aj)−Li2(ak−1ak−aj)WeGet∫01ln(1+x7)1+x7dx=∑6j=0∑6k=0−ak7[ln(ak−aj)ln(1−1ak)+Li2(akak−aj)−Li2(ak−1ak−aj)) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: A-mass-oscillating-on-a-spring-has-amplitude-of-1-2m-and-a-period-of-2-0s-a-Deduce-the-equation-for-the-displacement-x-if-the-timing-starts-at-the-instant-where-the-mass-has-its-maximum-displacementNext Next post: if-point-of-intersection-of-curves-C-1-x-2-4y-2-2xy-9x-3-and-C-2-2x-2-3y-2-4xy-3x-1-subtends-a-right-angle-at-origin-the-value-of-is- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.