Menu Close

0-1-log-1-x-7-1-x-7-dx-




Question Number 162219 by mathlove last updated on 27/Dec/21
Ω=∫_0 ^1 ((log(1+x^7 ))/(1+x^7 ))dx=?
Ω=10log(1+x7)1+x7dx=?
Answered by amin96 last updated on 27/Dec/21
x^7 =−t    (dt/dx)=−7x^6 =−7t^(6/7)   Ω=(1/7)∫_(−1) ^0 ((ln(1−t))/((1−t)t^(6/7) ))dt=−(1/7)Σ_(n=1) ^∞ H_n ∫_(−1) ^0 t^(n−(6/7)) dt=  =−(1/7)Σ_(n=1) ^∞ H_n [(t^(n+(1/7)) /(n+(1/7)))]_(−1) ^0 =−(1/7)Σ_(n=1) ^∞ ((H_n (−1)^(n+(1/7)) )/((n+(1/7))))=  =(1/7)Σ_(n=1) ^∞ ((H_n (−1)^n )/((n+(1/7))))=Σ_(n=1) ^∞ (((−1)^n H_n )/(7n+1))
x7=tdtdx=7x6=7t67Ω=1710ln(1t)(1t)t67dt=17n=1Hn10tn67dt==17n=1Hn[tn+17n+17]10=17n=1Hn(1)n+17(n+17)==17n=1Hn(1)n(n+17)=n=1(1)nHn7n+1
Answered by mindispower last updated on 30/Dec/21
1+x^7 =Π_(k=0) ^6 (x−a_k ),a_k =e^(i(1+2k)(π/7)) ,k∈{0,6}  (1/(1+x^7 ))=(1/7)Σ_(k=0) ^6 ((−a_k )/(x−a_k )).  log(1+x^7 )=Σ_(j=0) ^6 ln(x−a_j )  ⇔(1/7)Σ_(j=0) ^6 Σ_(k=0) ^6 −a_k ∫_0 ^1 .((ln(x−a_j ))/(x−a_k ))dx  ∫_0 ^1 ((ln(x−a_j ))/(x−a_k ))dx,y=x−a_k   =∫_(−a_k ) ^(1−a_k ) ((ln(y+a_k −a_j ))/y)dy  y=(a_j −a_k )z⇔  ∫_(−((ak)/(a_j −a_k ))) ^((1−a_k )/(a_j −a_k )) ((ln((a_k −a_j )(1−z)))/z)dz  =ln(a_k −a_j )ln(1−(1/a_k ))+∫_(−(a_k /(a_j −a_k ))) ^((1−a_k )/(a_j −a_k )) ((ln(1−x))/x)dx  Li_2 (z)=−∫_0 ^z ((ln(1−t))/t)dt  We Get  ln(a_k −a_j )ln(1−(1/a_k ))+Li_2 ((a_k /(a_k −a_j )))−Li_2 (((a_k −1)/(a_k −a_j )))  We Get  ∫^1 _0 ((ln(1+x^7 ))/(1+x^7 ))dx=Σ_(j=0) ^6 Σ_(k=0) ^6 ((−a_k )/7)[ln(a_k −a_j )ln(1−(1/a_k ))+Li_2 ((a_k /(a_k −a_j )))−Li_2 (((a_k −1)/(a_k −a_j ))))
1+x7=6k=0(xak),ak=ei(1+2k)π7,k{0,6}11+x7=176k=0akxak.log(1+x7)=6j=0ln(xaj)176j=06k=0ak01.ln(xaj)xakdx01ln(xaj)xakdx,y=xak=ak1akln(y+akaj)ydyy=(ajak)zakajak1akajakln((akaj)(1z))zdz=ln(akaj)ln(11ak)+akajak1akajakln(1x)xdxLi2(z)=0zln(1t)tdtWeGetln(akaj)ln(11ak)+Li2(akakaj)Li2(ak1akaj)WeGet01ln(1+x7)1+x7dx=6j=06k=0ak7[ln(akaj)ln(11ak)+Li2(akakaj)Li2(ak1akaj))

Leave a Reply

Your email address will not be published. Required fields are marked *