Menu Close

0-1-log-tan-d-




Question Number 105940 by Dwaipayan Shikari last updated on 01/Aug/20
∫_0 ^1 log(tanθ)dθ
01log(tanθ)dθ
Answered by mathmax by abdo last updated on 01/Aug/20
A =∫_0 ^1 ln(tanθ)dθ  by parts A = [θln(tanθ)]_0 ^1 −∫_0 ^1 θ×((1+tan^2 θ)/(tanθ)) dθ  =ln((π/4))−∫_0 ^1 θ{(1/(tanθ)) +tanθ}dθ   changement tanθ =x give  ∫_0 ^1 θ{(1/(tanθ)) +tanθ }dθ =∫_0 ^(tan(1))  arctanx{(1/x) +x}(dx/(1+x^2 ))  =∫_0 ^(tan(1))  ((1+x^2 )/x) ×((arctanx)/(1+x^2 ))dx  =∫_0 ^(tan(1))  ((arctan(x))/x)dx  let f(a) =∫_0 ^(tan(1))  ((arctan(αx))/x)dx ⇒f^′ (a) =∫_0 ^(tan(1))  (x/((1+α^2 x^2 )x))dx  =∫_0 ^(tan(1))  (dx/(1+α^2 x^2 )) =_(αx =z)    ∫_0 ^(αtan(1))  (dz/(α(1+z^2 ))) =(1/α)[arctanz]_0 ^(αtan(1))   =((arctan(αtan(1)))/α) ⇒f(α) =∫_0 ^α ((arctan(utan(1)))/u) du + C  and ∫_0 ^(tan(1))  ((arctanx)/x)dx =f(1) =∫_0 ^1  ((arctan(utan(1)))/u) du +C  ..be continued...
A=01ln(tanθ)dθbypartsA=[θln(tanθ)]0101θ×1+tan2θtanθdθ=ln(π4)01θ{1tanθ+tanθ}dθchangementtanθ=xgive01θ{1tanθ+tanθ}dθ=0tan(1)arctanx{1x+x}dx1+x2=0tan(1)1+x2x×arctanx1+x2dx=0tan(1)arctan(x)xdxletf(a)=0tan(1)arctan(αx)xdxf(a)=0tan(1)x(1+α2x2)xdx=0tan(1)dx1+α2x2=αx=z0αtan(1)dzα(1+z2)=1α[arctanz]0αtan(1)=arctan(αtan(1))αf(α)=0αarctan(utan(1))udu+Cand0tan(1)arctanxxdx=f(1)=01arctan(utan(1))udu+C..becontinued

Leave a Reply

Your email address will not be published. Required fields are marked *