Question Number 105940 by Dwaipayan Shikari last updated on 01/Aug/20
$$\int_{\mathrm{0}} ^{\mathrm{1}} {log}\left({tan}\theta\right){d}\theta \\ $$
Answered by mathmax by abdo last updated on 01/Aug/20
$$\mathrm{A}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{ln}\left(\mathrm{tan}\theta\right)\mathrm{d}\theta\:\:\mathrm{by}\:\mathrm{parts}\:\mathrm{A}\:=\:\left[\theta\mathrm{ln}\left(\mathrm{tan}\theta\right)\right]_{\mathrm{0}} ^{\mathrm{1}} −\int_{\mathrm{0}} ^{\mathrm{1}} \theta×\frac{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \theta}{\mathrm{tan}\theta}\:\mathrm{d}\theta \\ $$$$=\mathrm{ln}\left(\frac{\pi}{\mathrm{4}}\right)−\int_{\mathrm{0}} ^{\mathrm{1}} \theta\left\{\frac{\mathrm{1}}{\mathrm{tan}\theta}\:+\mathrm{tan}\theta\right\}\mathrm{d}\theta\:\:\:\mathrm{changement}\:\mathrm{tan}\theta\:=\mathrm{x}\:\mathrm{give} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \theta\left\{\frac{\mathrm{1}}{\mathrm{tan}\theta}\:+\mathrm{tan}\theta\:\right\}\mathrm{d}\theta\:=\int_{\mathrm{0}} ^{\mathrm{tan}\left(\mathrm{1}\right)} \:\mathrm{arctanx}\left\{\frac{\mathrm{1}}{\mathrm{x}}\:+\mathrm{x}\right\}\frac{\mathrm{dx}}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} } \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{tan}\left(\mathrm{1}\right)} \:\frac{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }{\mathrm{x}}\:×\frac{\mathrm{arctanx}}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx}\:\:=\int_{\mathrm{0}} ^{\mathrm{tan}\left(\mathrm{1}\right)} \:\frac{\mathrm{arctan}\left(\mathrm{x}\right)}{\mathrm{x}}\mathrm{dx} \\ $$$$\mathrm{let}\:\mathrm{f}\left(\mathrm{a}\right)\:=\int_{\mathrm{0}} ^{\mathrm{tan}\left(\mathrm{1}\right)} \:\frac{\mathrm{arctan}\left(\alpha\mathrm{x}\right)}{\mathrm{x}}\mathrm{dx}\:\Rightarrow\mathrm{f}^{'} \left(\mathrm{a}\right)\:=\int_{\mathrm{0}} ^{\mathrm{tan}\left(\mathrm{1}\right)} \:\frac{\mathrm{x}}{\left(\mathrm{1}+\alpha^{\mathrm{2}} \mathrm{x}^{\mathrm{2}} \right)\mathrm{x}}\mathrm{dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{tan}\left(\mathrm{1}\right)} \:\frac{\mathrm{dx}}{\mathrm{1}+\alpha^{\mathrm{2}} \mathrm{x}^{\mathrm{2}} }\:=_{\alpha\mathrm{x}\:=\mathrm{z}} \:\:\:\int_{\mathrm{0}} ^{\alpha\mathrm{tan}\left(\mathrm{1}\right)} \:\frac{\mathrm{dz}}{\alpha\left(\mathrm{1}+\mathrm{z}^{\mathrm{2}} \right)}\:=\frac{\mathrm{1}}{\alpha}\left[\mathrm{arctanz}\right]_{\mathrm{0}} ^{\alpha\mathrm{tan}\left(\mathrm{1}\right)} \\ $$$$=\frac{\mathrm{arctan}\left(\alpha\mathrm{tan}\left(\mathrm{1}\right)\right)}{\alpha}\:\Rightarrow\mathrm{f}\left(\alpha\right)\:=\int_{\mathrm{0}} ^{\alpha} \frac{\mathrm{arctan}\left(\mathrm{utan}\left(\mathrm{1}\right)\right)}{\mathrm{u}}\:\mathrm{du}\:+\:\mathrm{C} \\ $$$$\mathrm{and}\:\int_{\mathrm{0}} ^{\mathrm{tan}\left(\mathrm{1}\right)} \:\frac{\mathrm{arctanx}}{\mathrm{x}}\mathrm{dx}\:=\mathrm{f}\left(\mathrm{1}\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{arctan}\left(\mathrm{utan}\left(\mathrm{1}\right)\right)}{\mathrm{u}}\:\mathrm{du}\:+\mathrm{C} \\ $$$$..\mathrm{be}\:\mathrm{continued}… \\ $$