0-1-logxlog-1-x-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 103154 by Dwaipayan Shikari last updated on 13/Jul/20 ∫01logxlog(1−x)dx Answered by OlafThorendsen last updated on 13/Jul/20 I=∫01lnxln(1−x)dx−11−x=−∑∞n=0xnln(1−x)=−∑∞n=0xn+1n+1=−∑∞n=1xnnI=−∫01lnx∑∞n=1xnndxI=−∑∞n=11n∫01xnlnxdxIn=−∫01xnlnxdxIn=−[xn+1n+1lnx]01+∫01xn+1n+1.1xdxIn=0+∫01xnn+1dx=[xn+1(n+1)2]01In=1(n+1)2I=∑∞n=11nIn=∑∞n=11n(n+1)2I=∑∞n=1(1n−1n+1−1(n+1)2)∑∞n=1(1n−1n+1)=(1−12)+(12−13)+…∑∞n=1(1n−1n+1)=1I=1−∑∞n=11(n+1)2I=1−∑∞n=21n2I=2−∑∞n=11n2I=2−ζ(2)=2−π26 Commented by Dwaipayan Shikari last updated on 13/Jul/20 Greatsir! Answered by bobhans last updated on 13/Jul/20 I=∫10ln(x)ln(1−x)dxbyMaclaurinseriesln(1−x)=−∑∞n=1xnnweobtainI=−∫10ln(x)∑∞n=1xnndxI=−∑∞n=11n∫10xnln(x)dx[byparts]{u=ln(x)dv=xndxI=−∑∞n=11n∣(xn+1n+1ln(x)−xn+1(n+1)2)∣01I=∑∞n=11n(n+1)2[byL′Hopitalrule′s]I=∑∞n=1(1n−1n+1−1(n+1)2)thefirstseries∑∞n=1(1n−1n+1)istelescoping⇒limp→∞∑pn=1(1n−1n+1)=limp→∞(1−1p+1)=1nowthesecondseries∑∞n=11(n+1)2=∑∞k=21k2=−1+∑∞k=11k2=−1+π26.thereforeI=∫10ln(x)ln(1−x)dx=1−(−1+π26)=2−π26.★ Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-103151Next Next post: how-do-you-represent-the-distance-between-M-andN-is-7- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.