Menu Close

0-1-logxlog-1-x-dx-




Question Number 103154 by Dwaipayan Shikari last updated on 13/Jul/20
∫_0 ^1 logxlog(1−x)dx
01logxlog(1x)dx
Answered by OlafThorendsen last updated on 13/Jul/20
I = ∫_0 ^1 lnxln(1−x)dx  −(1/(1−x)) = −Σ_(n=0) ^∞ x^n   ln(1−x) = −Σ_(n=0) ^∞ (x^(n+1) /(n+1)) = −Σ_(n=1) ^∞ (x^n /n)  I = −∫_0 ^1 lnxΣ_(n=1) ^∞ (x^n /n)dx  I = −Σ_(n=1) ^∞ (1/n)∫_0 ^1 x^n lnxdx  I_n  = −∫_0 ^1 x^n lnxdx  I_n  = −[(x^(n+1) /(n+1))lnx]_0 ^1 +∫_0 ^1 (x^(n+1) /(n+1)).(1/x)dx  I_n  = 0+∫_0 ^1 (x^n /(n+1))dx = [(x^(n+1) /((n+1)^2 ))]_0 ^1   I_n  = (1/((n+1)^2 ))  I = Σ_(n=1) ^∞ (1/n)I_n  = Σ_(n=1) ^∞ (1/(n(n+1)^2 ))  I = Σ_(n=1) ^∞ ((1/n)−(1/(n+1))−(1/((n+1)^2 )))  Σ_(n=1) ^∞ ((1/n)−(1/(n+1))) = (1−(1/2))+((1/2)−(1/3))+...  Σ_(n=1) ^∞ ((1/n)−(1/(n+1))) = 1  I = 1−Σ_(n=1) ^∞ (1/((n+1)^2 ))  I = 1−Σ_(n=2) ^∞ (1/n^2 )  I = 2−Σ_(n=1) ^∞ (1/n^2 )  I = 2−ζ(2) = 2−(π^2 /6)
I=01lnxln(1x)dx11x=n=0xnln(1x)=n=0xn+1n+1=n=1xnnI=01lnxn=1xnndxI=n=11n01xnlnxdxIn=01xnlnxdxIn=[xn+1n+1lnx]01+01xn+1n+1.1xdxIn=0+01xnn+1dx=[xn+1(n+1)2]01In=1(n+1)2I=n=11nIn=n=11n(n+1)2I=n=1(1n1n+11(n+1)2)n=1(1n1n+1)=(112)+(1213)+n=1(1n1n+1)=1I=1n=11(n+1)2I=1n=21n2I=2n=11n2I=2ζ(2)=2π26
Commented by Dwaipayan Shikari last updated on 13/Jul/20
Great sir!
Greatsir!
Answered by bobhans last updated on 13/Jul/20
I = ∫_0 ^1  ln(x) ln(1−x) dx   by Maclaurin series   ln(1−x) = −Σ_(n=1) ^∞ (x^n /n)   we obtain I=−∫_0 ^1  ln(x)Σ_(n=1) ^∞ (x^n /n) dx   I = −Σ_(n=1) ^∞ (1/n)∫_0 ^1  x^n  ln(x) dx [ by parts ]   { ((u = ln(x))),((dv = x^n  dx )) :}  I=−Σ_(n=1) ^∞ (1/n)∣((x^(n+1) /(n+1)) ln(x)−(x^(n+1) /((n+1)^2 )))∣_0 ^1   I= Σ_(n=1) ^∞ (1/(n(n+1)^2 )) [ by L′Hopital rule′s]  I= Σ_(n=1) ^∞ ((1/n)−(1/(n+1))−(1/((n+1)^2 )))  the first series Σ_(n=1) ^∞ ((1/n)−(1/(n+1))) is  telescoping ⇒ lim_(p→∞)  Σ_(n=1) ^p  ((1/n)−(1/(n+1)))  = lim_(p→∞)  (1−(1/(p+1))) = 1   now the second series   Σ_(n=1) ^∞  (1/((n+1)^2 )) = Σ_(k=2) ^∞  (1/k^2 ) = −1+Σ_(k=1) ^∞  (1/k^2 )  = −1+(π^2 /6) .  therefore I = ∫_0 ^1  ln(x) ln(1−x)dx =   1−(−1+(π^2 /6)) = 2−(π^2 /6) . ★
I=10ln(x)ln(1x)dxbyMaclaurinseriesln(1x)=n=1xnnweobtainI=10ln(x)n=1xnndxI=n=11n10xnln(x)dx[byparts]{u=ln(x)dv=xndxI=n=11n(xn+1n+1ln(x)xn+1(n+1)2)01I=n=11n(n+1)2[byLHopitalrules]I=n=1(1n1n+11(n+1)2)thefirstseriesn=1(1n1n+1)istelescopinglimppn=1(1n1n+1)=limp(11p+1)=1nowthesecondseriesn=11(n+1)2=k=21k2=1+k=11k2=1+π26.thereforeI=10ln(x)ln(1x)dx=1(1+π26)=2π26.

Leave a Reply

Your email address will not be published. Required fields are marked *