0-1-n-x-arcsin-x-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 173148 by JordanRoddy last updated on 07/Jul/22 ∫01nx(arcsinx)dx Answered by Mathspace last updated on 07/Jul/22 In=∫01(nx)arcsinxdxwedothechangementarcsinx=t⇒x=sintandIn=∫0π2(sint)1ntcostdt=∫0π2t(cost(sint)1n)dt=[t1+1n(sint)1+1n]0π2−∫0π2nn+1(sint)1+1ndtπn2(n+1)−nn+1∫0π2(sint)1+1ndtwehave∫0π2(cost)2p−1.(sint)2q−1dt=B(ρ,q)=Γ(ρ).Γ(q)Γ(ρ+q)⇒2ρ−1=0and2q−1=1+1n⇒ρ=12andq=1+12n∫0π2(sint)1+1ndt=Γ(12)Γ(1+12n)2Γ(12+1+12n)=π2×Γ(1+12n)Γ(32+12n)⇒In=nπ2(n+1)−nn+1.π2×Γ(1+12n)Γ(32+12n) Commented by Mathspace last updated on 07/Jul/22 sorry..∫0π2(cost)2ρ−1(sint)2q−1dt=12B(p,q)=Γ(ρ).Γ(q)2Γ(ρ+q) Commented by Tawa11 last updated on 11/Jul/22 Greatsir Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-107609Next Next post: 0-dx-1-x-2-2x-x-2-1-pi-ln-3-2-3-solution-1-x-t-2-0-dt-1-t-4-2-0-1-dt-1-t- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.