Menu Close

0-1-sin-2-ln-x-ln-x-x-dx-




Question Number 163487 by mnjuly1970 last updated on 07/Jan/22
   Ω= ∫_0 ^( 1) (( sin^( 2) ( ln(x )). ln (x))/( (√x))) dx=?      −−−−−
$$ \\ $$$$\:\Omega=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{sin}^{\:\mathrm{2}} \left(\:\mathrm{ln}\left({x}\:\right)\right).\:\mathrm{ln}\:\left({x}\right)}{\:\sqrt{{x}}}\:{dx}=? \\ $$$$\:\:\:\:−−−−− \\ $$
Answered by Lordose last updated on 07/Jan/22
  Ω = ∫_0 ^( ∞) x^((1/2)−1) sin^2 (ln(x))ln(x)dx  Ω =^(x=e^x ) ∫_(−∞) ^( ∞) xe^(x/2) sin^2 (x)dx  Ω = Im∫_(−∞) ^( ∞) xe^(x/2) ∙e^(−2ix) dx  Ω = Im∫_(−∞) ^( ∞) xe^(−x(2i−(1/2))) dx =^(x=(y/(2i−(1/2)))) Im((1/((2i−(1/2))^2 ))∫_(−∞) ^( ∞) ye^(−y) dy)  Ω = Diverges
$$ \\ $$$$\Omega\:=\:\int_{\mathrm{0}} ^{\:\infty} \mathrm{x}^{\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{1}} \mathrm{sin}^{\mathrm{2}} \left(\mathrm{ln}\left(\mathrm{x}\right)\right)\mathrm{ln}\left(\mathrm{x}\right)\mathrm{dx} \\ $$$$\Omega\:\overset{\mathrm{x}=\mathrm{e}^{\mathrm{x}} } {=}\int_{−\infty} ^{\:\infty} \mathrm{xe}^{\frac{\mathrm{x}}{\mathrm{2}}} \mathrm{sin}^{\mathrm{2}} \left(\mathrm{x}\right)\mathrm{dx} \\ $$$$\Omega\:=\:\boldsymbol{\mathfrak{Im}}\int_{−\infty} ^{\:\infty} \mathrm{xe}^{\frac{\mathrm{x}}{\mathrm{2}}} \centerdot\mathrm{e}^{−\mathrm{2ix}} \mathrm{dx} \\ $$$$\Omega\:=\:\boldsymbol{\mathfrak{Im}}\int_{−\infty} ^{\:\infty} \mathrm{xe}^{−\mathrm{x}\left(\mathrm{2}\boldsymbol{\mathrm{i}}−\frac{\mathrm{1}}{\mathrm{2}}\right)} \mathrm{dx}\:\overset{\mathrm{x}=\frac{\mathrm{y}}{\mathrm{2}\boldsymbol{\mathrm{i}}−\frac{\mathrm{1}}{\mathrm{2}}}} {=}\boldsymbol{\mathfrak{Im}}\left(\frac{\mathrm{1}}{\left(\mathrm{2}\boldsymbol{\mathrm{i}}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} }\int_{−\infty} ^{\:\infty} \mathrm{ye}^{−\mathrm{y}} \mathrm{dy}\right) \\ $$$$\Omega\:=\:\mathrm{Diverges} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *