Menu Close

0-1-sin-x-1-cos-x-dx-




Question Number 186193 by normans last updated on 02/Feb/23
         ∫_0 ^1    ((sin (x))/(1  +  cos(x)))  dx
$$ \\ $$$$\:\:\:\:\:\:\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\:\:\frac{\boldsymbol{{sin}}\:\left(\boldsymbol{{x}}\right)}{\mathrm{1}\:\:+\:\:\boldsymbol{{cos}}\left(\boldsymbol{{x}}\right)}\:\:\boldsymbol{{dx}} \\ $$
Answered by CElcedricjunior last updated on 02/Feb/23
∫_0 ^1 ((sinx)/(1+cosx))dx=−[ln(1+cosx)]_0 ^1   ∫_0 ^1 ((sinx)/(1+cosx))dx=ln2−ln(1+cos1)  =======.=.==========..=.  .............le celebre cedric junior...........
$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\boldsymbol{{sinx}}}{\mathrm{1}+\boldsymbol{{cosx}}}\boldsymbol{{dx}}=−\left[\boldsymbol{{ln}}\left(\mathrm{1}+\boldsymbol{{cosx}}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\boldsymbol{{sinx}}}{\mathrm{1}+\boldsymbol{{cosx}}}\boldsymbol{{dx}}=\boldsymbol{{ln}}\mathrm{2}−\boldsymbol{{ln}}\left(\mathrm{1}+\boldsymbol{{cos}}\mathrm{1}\right) \\ $$$$=======.=.==========..=. \\ $$$$………….{le}\:{celebre}\:{cedric}\:{junior}……….. \\ $$$$ \\ $$
Answered by MJS_new last updated on 02/Feb/23
∫((sin x)/(1+cos x))dx=∫tan (x/2) dx=−2ln cos (x/2) +C  ⇒ answe is −2ln cos (1/2)
$$\int\frac{\mathrm{sin}\:{x}}{\mathrm{1}+\mathrm{cos}\:{x}}{dx}=\int\mathrm{tan}\:\frac{{x}}{\mathrm{2}}\:{dx}=−\mathrm{2ln}\:\mathrm{cos}\:\frac{{x}}{\mathrm{2}}\:+{C} \\ $$$$\Rightarrow\:\mathrm{answe}\:\mathrm{is}\:−\mathrm{2ln}\:\mathrm{cos}\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *