Question Number 47637 by tanmay.chaudhury50@gmail.com last updated on 12/Nov/18
$$\int_{\mathrm{0}} ^{\mathrm{1}} {sin}\left(\left[{x}\right]+\left[\mathrm{2}{x}\right]\right){dx} \\ $$
Commented by maxmathsup by imad last updated on 12/Nov/18
$${changement}\:\mathrm{2}{x}={t}\:{give}\:{I}\:=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{2}} {sin}\left(\left[\frac{{t}}{\mathrm{2}\:}\right]+\left[{t}\right]\right){dt}\:\Rightarrow \\ $$$$\mathrm{2}{I}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} {sin}\left(\left[\frac{{t}}{\mathrm{2}}\right]+\left[{t}\right]\right){dt}\:+\int_{\mathrm{1}} ^{\mathrm{2}} {sin}\left(\left[\frac{{t}}{\mathrm{2}\:}\right]+\left[{t}\right]\right){dt} \\ $$$$\left.=\mathrm{0}\:+\int_{\mathrm{1}} ^{\mathrm{2}} {sin}\left(\mathrm{1}\right)\right)\:{because}\:\left[\frac{{t}}{\mathrm{2}}\right]=\mathrm{0}\:{and}\:\left[{t}\right]=\mathrm{1}\:\Rightarrow{I}\:=\frac{{sin}\left(\mathrm{1}\right)}{\mathrm{2}}\:. \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 13/Nov/18
$${thank}\:{you}\:{sir}… \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 13/Nov/18
$$\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} {sin}\left(\left[{x}\right]+\left[\mathrm{2}{x}\right]\right){dx}+\int_{\frac{\mathrm{1}}{\mathrm{2}}} ^{\mathrm{1}} \:{sin}\left(\left[{x}\right]+\left[\mathrm{2}{x}\right]\right){dx} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} {sin}\left(\mathrm{0}+\mathrm{0}\right){dx}+\int_{\frac{\mathrm{1}}{\mathrm{2}}} ^{\mathrm{1}} \:{sin}\left(\mathrm{0}+\mathrm{1}\right){dx} \\ $$$$=\mathrm{0}+{sin}\mathrm{1}×\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}{sin}\mathrm{1} \\ $$