Menu Close

0-1-sinx-dx-




Question Number 187453 by norboyev last updated on 17/Feb/23
∫_0 ^1 (√(sinx))dx=?
10sinxdx=?
Answered by Frix last updated on 17/Feb/23
∫(√(sin x)) dx= [Elliptic Integral]  =−2E ((π/4)−(x/2)∣2) +C  ∫_0 ^1 (√(sin x)) dx≈.642977634658
sinxdx=[EllipticIntegral]=2E(π4x22)+C10sinxdx.642977634658
Answered by CElcedricjunior last updated on 21/Feb/23
∫_0 ^1 (√(sinx))dx=k  posons sinx=t^2 =>dx=((2t)/( (√(1−t^2 ))))dt  qd: { ((x−>0 )),((x−>1)) :}=> { ((t−>0)),((t−>sin(1))) :}  k=∫_0 ^(sin(1)) ((2t^3 )/( (√(1−t^2 ))))dt   { ((u=t^2 )),((v′=(t/( (√(1−t^2 )))))) :}=> { ((u′=2t)),((v=−(√(1−t^2 )))) :}★Moivre  k=−2sin^2 (1)∣cos(1)∣+4∫_0 ^(sin(1)) t(√(1−t^2 ))dt  k=−sin(1)sin(2)+4[−(2/3)(√((1−t^2 )))]_0 ^(sin(1))  ■Cedric junior  k=sin(1)sin(2)−(8/3)cos^(3/2) (1)+(8/3)
01sinxdx=kposonssinx=t2=>dx=2t1t2dtqd:{x>0x>1=>{t>0t>sin(1)k=0sin(1)2t31t2dt{u=t2v=t1t2=>{u=2tv=1t2Moivrek=2sin2(1)cos(1)+40sin(1)t1t2dtk=sin(1)sin(2)+4[23(1t2)]0sin(1)◼Cedricjuniork=sin(1)sin(2)83cos32(1)+83

Leave a Reply

Your email address will not be published. Required fields are marked *