Menu Close

0-1-t-2-1-dt-




Question Number 146756 by Bens last updated on 15/Jul/21
    ∫_( 0) ^( 1)  t^2  + 1 dt
$$ \\ $$$$ \\ $$$$\underset{\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\:{t}^{\mathrm{2}} \:+\:\mathrm{1}\:{dt} \\ $$
Answered by tabata last updated on 15/Jul/21
((t^3 /3)+t)^3 _0 =(((27)/3)+3)=9+3=12
$$\left(\frac{{t}^{\mathrm{3}} }{\mathrm{3}}+{t}\underset{\mathrm{0}} {\right)}^{\mathrm{3}} =\left(\frac{\mathrm{27}}{\mathrm{3}}+\mathrm{3}\right)=\mathrm{9}+\mathrm{3}=\mathrm{12} \\ $$
Answered by puissant last updated on 15/Jul/21
=[(t^3 /3)+t]_0 ^1 = (4/3)..
$$=\left[\frac{\mathrm{t}^{\mathrm{3}} }{\mathrm{3}}+\mathrm{t}\right]_{\mathrm{0}} ^{\mathrm{1}} =\:\frac{\mathrm{4}}{\mathrm{3}}.. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *