Menu Close

0-1-t-n-1-2-1-t-n-1-dt-




Question Number 149944 by ArielVyny last updated on 08/Aug/21
∫_0 ^1 (t^((n−1)/2) /((1+t)^(n+1) ))dt
$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{t}^{\frac{{n}−\mathrm{1}}{\mathrm{2}}} }{\left(\mathrm{1}+{t}\right)^{{n}+\mathrm{1}} }{dt} \\ $$
Commented by Ar Brandon last updated on 08/Aug/21
β(m, n)=∫_0 ^1 ((x^(m−1) +x^(n−1) )/((1+x)^(m+n) ))dx=∫_1 ^∞ ((x^(m−1) +x^(n−1) )/((1+x)^(m+n) ))dx
$$\beta\left(\mathrm{m},\:\mathrm{n}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{x}^{\mathrm{m}−\mathrm{1}} +\mathrm{x}^{\mathrm{n}−\mathrm{1}} }{\left(\mathrm{1}+\mathrm{x}\right)^{\mathrm{m}+\mathrm{n}} }\mathrm{dx}=\int_{\mathrm{1}} ^{\infty} \frac{\mathrm{x}^{\mathrm{m}−\mathrm{1}} +\mathrm{x}^{\mathrm{n}−\mathrm{1}} }{\left(\mathrm{1}+\mathrm{x}\right)^{\mathrm{m}+\mathrm{n}} }\mathrm{dx} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *