Question Number 163402 by Ahmed777hamouda last updated on 06/Jan/22
$$\:\:\:\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \left(\boldsymbol{{x}}−\mathrm{1}\right)^{\mathrm{10}} \left(\boldsymbol{{x}}−\mathrm{3}\right)^{\mathrm{3}} \boldsymbol{{dx}} \\ $$
Answered by Ar Brandon last updated on 06/Jan/22
$${I}=\int_{\mathrm{0}} ^{\mathrm{1}} \left({x}−\mathrm{1}\right)^{\mathrm{10}} \left({x}−\mathrm{3}\right)^{\mathrm{3}} {dx},\:{t}={x}−\mathrm{3} \\ $$$$\:\:\:=\int_{−\mathrm{3}} ^{−\mathrm{2}} \left({t}+\mathrm{2}\right)^{\mathrm{10}} {t}^{\mathrm{3}} {dt}=\left[\frac{{t}^{\mathrm{3}} \left({t}+\mathrm{2}\right)^{\mathrm{11}} }{\mathrm{11}}\right]_{−\mathrm{3}} ^{−\mathrm{2}} −\frac{\mathrm{3}}{\mathrm{11}}\int_{−\mathrm{3}} ^{−\mathrm{2}} {t}^{\mathrm{2}} \left({t}+\mathrm{2}\right)^{\mathrm{11}} {dt} \\ $$$$\:\:\:=−\frac{\mathrm{27}}{\mathrm{11}}−\frac{\mathrm{3}}{\mathrm{11}}\left[\frac{{t}^{\mathrm{2}} \left({t}+\mathrm{2}\right)^{\mathrm{12}} }{\mathrm{12}}\right]_{−\mathrm{3}} ^{−\mathrm{2}} +\frac{\mathrm{3}}{\mathrm{11}}\centerdot\frac{\mathrm{2}}{\mathrm{12}}\int_{−\mathrm{3}} ^{−\mathrm{2}} {t}\left({t}+\mathrm{2}\right)^{\mathrm{12}} {dt} \\ $$$$\:\:\:=−\frac{\mathrm{27}}{\mathrm{11}}+\frac{\mathrm{27}}{\mathrm{11}×\mathrm{12}}+\frac{\mathrm{1}}{\mathrm{22}}\left[\frac{{t}\left({t}+\mathrm{2}\right)^{\mathrm{13}} }{\mathrm{13}}\right]_{−\mathrm{3}} ^{−\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{22}}\centerdot\frac{\mathrm{1}}{\mathrm{13}}\int_{−\mathrm{3}} ^{−\mathrm{2}} \left({t}+\mathrm{2}\right)^{\mathrm{13}} {dt} \\ $$$$\:\:\:=−\frac{\mathrm{27}}{\mathrm{11}}+\frac{\mathrm{27}}{\mathrm{132}}−\frac{\mathrm{1}}{\mathrm{22}}\centerdot\frac{\mathrm{3}}{\mathrm{13}}−\frac{\mathrm{1}}{\mathrm{22}×\mathrm{13}}\centerdot\left[\frac{\left({t}+\mathrm{2}\right)^{\mathrm{14}} }{\mathrm{14}}\right]_{−\mathrm{3}} ^{−\mathrm{2}} \\ $$$$\:\:\:=−\frac{\mathrm{27}}{\mathrm{11}}+\frac{\mathrm{27}}{\mathrm{132}}−\frac{\mathrm{3}}{\mathrm{286}}−\frac{\mathrm{1}}{\mathrm{286}×\mathrm{14}}=−\frac{\mathrm{4525}}{\mathrm{2002}} \\ $$
Commented by peter frank last updated on 07/Jan/22
$$\mathrm{great} \\ $$