Menu Close

0-1-x-1-x-6-dx-




Question Number 160194 by amin96 last updated on 25/Nov/21
∫_0 ^1 (x/(1−x^6 ))dx=?
01x1x6dx=?
Commented by mr W last updated on 25/Nov/21
=∫_0 ^1 x(1+x^6 +x^(12) +x^(18) +...)dx  =[(x^2 /2)+(x^8 /8)+(x^(14) /(14))+(x^(20) /(20))+...]_0 ^1   =(1/2)+(1/8)+(1/(14))+(1/(20))+...  =(1/2)Σ_(n=0) ^∞  (1/(3n+1))  =divergent!
=01x(1+x6+x12+x18+)dx=[x22+x88+x1414+x2020+]01=12+18+114+120+=12n=013n+1=divergent!
Answered by Ar Brandon last updated on 25/Nov/21
I=∫_0 ^1 (x/(1−x^6 ))dx=(1/2)∫_0 ^1 (dx/(1−x^3 ))=−(1/2)∫(dx/((x−1)(x^2 +x+1)))  (1/(x^3 −1))=(a/(x−1))+((bx+c)/(x^2 +x+1))=(((a+b)x^2 +(a−b+c)x+(a−c))/(x^3 −1))  a=−b, a=(1/3), c=−(2/3)  I=−(1/6)∫_0 ^1 ((1/(x−1))−((x+2)/(x^2 +x+1)))dx     =−((ln∣x−1∣)/6)+(1/6)∫((1/2)∙((2x+1)/(x^2 +x+1))+(3/2)∙(1/((x+(1/2))^2 +(3/4))))dx     =[−((ln∣x−1∣)/6)+(1/(12))ln(x^2 +x+1)+(1/4)∙(2/( (√3)))arctan(((2x+1)/( (√3))))]_0 ^1
I=01x1x6dx=1201dx1x3=12dx(x1)(x2+x+1)1x31=ax1+bx+cx2+x+1=(a+b)x2+(ab+c)x+(ac)x31a=b,a=13,c=23I=1601(1x1x+2x2+x+1)dx=lnx16+16(122x+1x2+x+1+321(x+12)2+34)dx=[lnx16+112ln(x2+x+1)+1423arctan(2x+13)]01
Commented by mr W last updated on 25/Nov/21
the integral diverges.
theintegraldiverges.

Leave a Reply

Your email address will not be published. Required fields are marked *