0-1-x-1-x-ln-x-1-x-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 97552 by bemath last updated on 08/Jun/20 ∫10x1−xln(x1−x)dx? Answered by john santu last updated on 08/Jun/20 Answered by abdomathmax last updated on 08/Jun/20 letI=∫01x1−xln(x1−x)dxchangementx1−x=tgivex1−x=t2⇒x=t2−t2x⇒(1+t2)x=t2⇒x=t21+t2=1+t2−11+t2=1−11+t2⇒dxdt=2t(1+t2)2⇒I=∫0∞tln(t21+t21−t21+t2)2t(1+t2)2dt=4∫0∞t2(1+t2)2ln(t)dt=4∫0∞1+t2−1(1+t2)2ln(t)dt=4∫0∞lnt1+t2dt−4∫0∞lnt(1+t2)2dt=0−4∫0∞lnt(1+t2)2dtletA=∫0∞lnt(1+t2)2dt⇒A=∫01lnt(1+t2)2dt+∫1+∞lnt(1+t2)2dt∫1+∞lnt(1+t2)2dt=t=1u∫01lnu(1+1u2)2×−duu2=−∫01u2lnu(1+u2)2du⇒A=∫01(1−t2)lnt(1+t2)2dt11+u=∑n=0∞(−1)nun⇒−1(1+u)2=∑n=1∞n(−1)nun−1⇒1(1+u)2=∑n=1∞n(−1)n−1un−1⇒1(1+x2)2=∑n=1∞n(−1)n−1x2n−2⇒A=∫01(1−x2)lnx(∑n=1∞n(−1)n−1x2n−2)dx=∑n=1∞n(−1)n−1∫01(x2n−2−x2n)lnxdxwn=∫01(x2n−2−x2n)ln(x)dx=[(12n−1x2n−1−12n+1x2n+1)lnx]01−∫01(12n−1x2n−2−12n+1x2n)dx=−1(2n−1)2+1(2n+1)2⇒A=∑n=1∞n(−1)n−1(1(2n+1)2−1(2n−1)2)=∑n=1∞n(2n+1)2(−1)n−1−∑n=1∞n(−1)n−1(2n−1)2(→n=p+1)=∑n=1∞n(2n+1)2(−1)n−1−∑p=0∞(p+1)(−1)p(2p+1)2=−∑n=1∞n(−1)n(2n+1)2−∑n=1∞(n+1)(−1)n(2n+1)2−1=−2∑n=1∞n(−1)n(2n+1)2−∑n=1∞(−1)n(2n+1)2−1resttofindthosesums…becontinued… Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-97550Next Next post: Find-all-the-triples-of-positive-integers-x-y-z-so-that-x-y-2020-y-z-2020-is-a-rational-number-and-x-2-y-2-z-2-be-a-prime-number- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.