Menu Close

0-1-x-1-x-ln-x-1-x-dx-




Question Number 97552 by bemath last updated on 08/Jun/20
∫_0 ^1  (√(x/(1−x))) ln((x/(1−x))) dx ?
10x1xln(x1x)dx?
Answered by john santu last updated on 08/Jun/20
Answered by abdomathmax last updated on 08/Jun/20
let I =∫_0 ^1  (√(x/(1−x)))ln((x/(1−x)))dx changement (√(x/(1−x)))=t  give (x/(1−x)) =t^2  ⇒x =t^2 −t^2 x ⇒(1+t^2 )x =t^2  ⇒  x =(t^2 /(1+t^2 )) =((1+t^2 −1)/(1+t^2 )) =1−(1/(1+t^2 )) ⇒(dx/dt) =((2t)/((1+t^2 )^2 )) ⇒  I =∫_0 ^∞   t ln(((t^2 /(1+t^2 ))/(1−(t^2 /(1+t^2 )))))((2t)/((1+t^2 )^2 ))dt  =4 ∫_0 ^∞   (t^2 /((1+t^2 )^2 ))ln(t)dt  =4 ∫_0 ^∞  ((1+t^2 −1)/((1+t^2 )^2 ))ln(t)dt =4 ∫_0 ^∞  ((lnt)/(1+t^2 ))dt−4∫_0 ^∞  ((lnt)/((1+t^2 )^2 ))dt  =0−4 ∫_0 ^∞  ((lnt)/((1+t^2 )^2 ))dt  let A =∫_0 ^∞  ((lnt)/((1+t^2 )^2 ))dt ⇒A =∫_0 ^1  ((lnt)/((1+t^2 )^2 ))dt+∫_1 ^(+∞)  ((lnt)/((1+t^2 )^2 ))dt  ∫_1 ^(+∞)  ((lnt)/((1+t^2 )^2 ))dt =_(t=(1/u))   ∫_0 ^1  ((lnu)/((1+(1/u^2 ))^2 ))×((−du)/u^2 )  =−∫_0 ^1  ((u^2 lnu)/((1+u^2 )^2 ))du ⇒A =∫_0 ^1  (((1−t^2 )lnt)/((1+t^2 )^2 ))dt  (1/(1+u)) =Σ_(n=0) ^∞  (−1)^n  u^n  ⇒  −(1/((1+u)^2 )) =Σ_(n=1) ^∞  n(−1)^n  u^(n−1)  ⇒  (1/((1+u)^2 )) =Σ_(n=1) ^∞  n(−1)^(n−1)  u^(n−1)  ⇒  (1/((1+x^2 )^2 )) =Σ_(n=1) ^∞  n(−1)^(n−1)  x^(2n−2)  ⇒  A =∫_0 ^1  (1−x^2 )lnx(Σ_(n=1) ^∞  n(−1)^(n−1)  x^(2n−2) )dx  =Σ_(n=1) ^∞  n(−1)^(n−1)  ∫_0 ^1 (x^(2n−2) −x^(2n) )lnxdx  w_n =∫_0 ^1  (x^(2n−2) −x^(2n) )ln(x)dx  =[((1/(2n−1))x^(2n−1) −(1/(2n+1))x^(2n+1) )lnx]_0 ^1   −∫_0 ^1  ((1/(2n−1))x^(2n−2) −(1/(2n+1))x^(2n) )dx  =−(1/((2n−1)^2 )) +(1/((2n+1)^2 )) ⇒  A =Σ_(n=1) ^∞  n(−1)^(n−1) ((1/((2n+1)^2 ))−(1/((2n−1)^2 )))  =Σ_(n=1) ^∞  (n/((2n+1)^2 ))(−1)^(n−1)  −Σ_(n=1) ^∞  ((n(−1)^(n−1) )/((2n−1)^2 ))(→n=p+1)  =Σ_(n=1) ^∞  (n/((2n+1)^2 ))(−1)^(n−1)  −Σ_(p=0) ^∞  (((p+1)(−1)^p )/((2p+1)^2 ))  =−Σ_(n=1) ^∞  ((n(−1)^n )/((2n+1)^2 )) −Σ_(n=1) ^∞  (((n+1)(−1)^n )/((2n+1)^2 )) −1  =−2 Σ_(n=1) ^∞  ((n(−1)^n )/((2n+1)^2 )) −Σ_(n=1) ^∞  (((−1)^n )/((2n+1)^2 ))−1  rest to find those sums ...be continued...
letI=01x1xln(x1x)dxchangementx1x=tgivex1x=t2x=t2t2x(1+t2)x=t2x=t21+t2=1+t211+t2=111+t2dxdt=2t(1+t2)2I=0tln(t21+t21t21+t2)2t(1+t2)2dt=40t2(1+t2)2ln(t)dt=401+t21(1+t2)2ln(t)dt=40lnt1+t2dt40lnt(1+t2)2dt=040lnt(1+t2)2dtletA=0lnt(1+t2)2dtA=01lnt(1+t2)2dt+1+lnt(1+t2)2dt1+lnt(1+t2)2dt=t=1u01lnu(1+1u2)2×duu2=01u2lnu(1+u2)2duA=01(1t2)lnt(1+t2)2dt11+u=n=0(1)nun1(1+u)2=n=1n(1)nun11(1+u)2=n=1n(1)n1un11(1+x2)2=n=1n(1)n1x2n2A=01(1x2)lnx(n=1n(1)n1x2n2)dx=n=1n(1)n101(x2n2x2n)lnxdxwn=01(x2n2x2n)ln(x)dx=[(12n1x2n112n+1x2n+1)lnx]0101(12n1x2n212n+1x2n)dx=1(2n1)2+1(2n+1)2A=n=1n(1)n1(1(2n+1)21(2n1)2)=n=1n(2n+1)2(1)n1n=1n(1)n1(2n1)2(n=p+1)=n=1n(2n+1)2(1)n1p=0(p+1)(1)p(2p+1)2=n=1n(1)n(2n+1)2n=1(n+1)(1)n(2n+1)21=2n=1n(1)n(2n+1)2n=1(1)n(2n+1)21resttofindthosesumsbecontinued

Leave a Reply

Your email address will not be published. Required fields are marked *